高中數學知識點總結(熱)
總結是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓和一些規律性認識的一種書面材料,它可以有效鍛煉我們的語言組織能力,因此我們要做好歸納,寫好總結。那么總結要注意有什么內容呢?下面是小編收集整理的高中數學知識點總結,僅供參考,歡迎大家閱讀。
高中數學知識點總結1
1、命題的四種形式及其相互關系是什么?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
2、對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的`唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
3、函數的三要素是什么?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
4、反函數存在的條件是什么?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③注明定義域)
5、反函數的性質有哪些?
①互為反函數的圖象關于直線y=x對稱;
②保存了原來函數的單調性、奇函數性;
6、函數f(x)具有奇偶性的必要(非充分)條件是什么?
(f(x)定義域關于原點對稱)
高中數學知識點總結2
方差定義
方差用來度量隨機變量和其數學期望(即均值)之間的偏離程度。統計中的方差(樣本方差)是各個數據分別與其平均數之差的平方的和的.平均數。
方差性質
1.設C為常數,則D(C)=0(常數無波動);
2.D(CX)=C2D(X)(常數平方提取);
3.若X、Y相互獨立,則前面兩項恰為D(X)和D(Y),第三項展開后為
當X、Y相互獨立時,故第三項為零。
獨立前提的逐項求和,可推廣到有限項。
方差的應用
計算下列一組數據的極差、方差及標準差(精確到0.01).
50,55,96,98,65,100,70,90,85,100.
答:極差為100-50=50.
高中數學知識點總結3
1.一些基本概念:
(1)向量:既有大小,又有方向的量.
(2)數量:只有大小,沒有方向的`量.
(3)有向線段的三要素:起點、方向、長度.
(4)零向量:長度為0的向量.
(5)單位向量:長度等于1個單位的向量.
(6)平行向量(共線向量):方向相同或相反的非零向量.
※零向量與任一向量平行.
(7)相等向量:長度相等且方向相同的向量.
2.向量加法運算:
⑴三角形法則的特點:首尾相連.
⑵平行四邊形法則的特點:共起點
高中數學知識點總結4
1、你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。
2、線面平行和面面平行的定義、判定和性質定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯系和轉化在解決立幾問題中的應用是怎樣的?每種平行之間轉換的條件是什么?
3、三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關鍵)一面四直線,立柱是關鍵,垂直三處見
3、線面平行的判定定理和性質定理在應用時都是三個條件,但這三個條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個平面內的兩條相交直線與另一個平面內的兩條相交直線分別平行”而導致證明過程跨步太大。
4、求兩條異面直線所成的角、直線與平面所成的角和二面角時,如果所求的.角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。
5、異面直線所成角利用“平移法”求解時,一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線所成角,應用時一定要從題意出發,是用銳角還是其補角,還是兩種情況都有可能。
6、你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?
7、兩條異面直線所成的角的范圍:0°《α≤90°
直線與平面所成的角的范圍:0o≤α≤90°
二面角的平面角的取值范圍:0°≤α≤180°
8、你知道異面直線上兩點間的距離公式如何運用嗎?
9、平面圖形的翻折,立體圖形的展開等一類問題,要注意翻折,展開前后有關幾何元素的“不變量”與“不變性”。
10、立幾問題的求解分為“作”,“證”,“算”三個環節,你是否只注重了“作”,“算”,而忽視了“證”這一重要環節?
11、棱柱及其性質、平行六面體與長方體及其性質。這些知識你掌握了嗎?(注意運用向量的方法解題)
12、球及其性質;經緯度定義易混。經度為二面角,緯度為線面角、球面距離的求法;球的表面積和體積公式。
高中數學知識點總結5
一、高中數列基本公式:
1、一般數列的通項an與前n項和Sn的關系:an=
2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關于n的一次式;當d=0時,an是一個常數。
3、等差數列的前n項和公式:Sn=
Sn=
Sn=
當d≠0時,Sn是關于n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關于n的正比例式。
4、等比數列的通項公式: an= a1qn-1an= akqn-k
(其中a1為首項、ak為已知的第k項,an≠0)
5、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關于n的正比例式);
當q≠1時,Sn=
Sn=
二、高中數學中有關等差、等比數列的結論
1、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數列。
2、等差數列{an}中,若m+n=p+q,則
3、等比數列{an}中,若m+n=p+q,則
4、等比數列{an}的任意連續m項的`和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數列。
5、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
6、兩個等比數列{an}與{bn}的積、商、倒數組成的數列仍為等比數列。
7、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
9、三個數成等差數列的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
10、三個數成等比數列的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)
高中數學知識點總結6
一、圓及圓的相關量的定義
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫
做直徑。
3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
二、有關圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S三、有關圓的基本性質與定理(27個)
1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO
2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定
理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。
5.一條弧所對的圓周角等于它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線上的3個點確定一個圓。
8.一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形3邊距離相等。
9.直線AB與圓O的位置關系(設OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過切點的直徑;經過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。
11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關圓的計算公式
1.圓的周長C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長l=nπr/180
4.扇形面積S=nπr? /360=rl/2
5.圓錐側面積S=πrl
四、圓的方程
1.圓的標準方程
在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是
(x-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的'標準方程展開,移項,合并同類項后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2
相關知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.
五、圓與直線的位置關系判斷
平面內,直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時的兩個x值x1,x2,并且我們規定x1
當x=-C/Ax2時,直線與圓相離
當x1
當x=-C/A=x1或x=-C/A=x2時,直線與圓相切
圓的定理:
1.不在同一直線上的三點確定一個圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2.圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
11.定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角
12.①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
13.切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理 圓的切線垂直于經過切點的半徑
15.推論1 經過圓心且垂直于切線的直線必經過切點
16.推論2 經過切點且垂直于切線的直線必經過圓心
17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-rr)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
(1)依次連結各分點所得的多邊形是這個圓的內接正n邊形
(2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24.正n邊形的每個內角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線長= d-(R-r) 外公切線長= d-(R+r)
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
高中數學知識點總結7
:平面
1.經過不在同一條直線上的三點確定一個面.
注:兩兩相交且不過同一點的四條直線必在同一平面內.
2.兩個平面可將平面分成3或4部分.(①兩個平面平行,②兩個平面相交)
3.過三條互相平行的直線可以確定1或3個平面.(①三條直線在一個平面內平行,②三條直線不在一個平面內平行)
[注]:三條直線可以確定三個平面,三條直線的公共點有0或1個.
4.三個平面最多可把空間分成8部分.(X、Y、Z三個方向)
:空間的直線與平面
⒈平面的基本性質⑴三個公理及公理三的三個推論和它們的用途. ⑵斜二測畫法.
⒉空間兩條直線的位置關系:相交直線、平行直線、異面直線.
⑴公理四(平行線的傳遞性).等角定理.
⑵異面直線的判定:判定定理、反證法.
⑶異面直線所成的角:定義(求法)、范圍.
⒊直線和平面平行直線和平面的位置關系、直線和平面平行的判定與性質.
⒋直線和平面垂直
⑴直線和平面垂直:定義、判定定理.
⑵三垂線定理及逆定理.
5.平面和平面平行
兩個平面的位置關系、兩個平面平行的判定與性質.
6.平面和平面垂直
互相垂直的平面及其判定定理、性質定理.
(二)直線與平面的平行和垂直的證明思路(見附圖)
(三)夾角與距離
7.直線和平面所成的角與二面角
⑴平面的斜線和平面所成的角:三面角余弦公式、最小角定理、斜線和平
面所成的角、直線和平面所成的角.
⑵二面角:①定義、范圍、二面角的平面角、直二面角.
②互相垂直的平面及其判定定理、性質定理.
8.距離
⑴點到平面的距離.
⑵直線到與它平行平面的距離.
⑶兩個平行平面的距離:兩個平行平面的公垂線、公垂線段.
⑷異面直線的距離:異面直線的公垂線及其性質、公垂線段.
(四)簡單多面體與球
9.棱柱與棱錐
⑴多面體.
⑵棱柱與它的性質:棱柱、直棱柱、正棱柱、棱柱的性質.
⑶平行六面體與長方體:平行六面體、直平行六面體、長方體、正四棱柱、
正方體;平行六面體的性質、長方體的性質.
⑷棱錐與它的性質:棱錐、正棱錐、棱錐的性質、正棱錐的性質.
⑸直棱柱和正棱錐的直觀圖的畫法.
10.多面體歐拉定理的發現
⑴簡單多面體的歐拉公式.
⑵正多面體.
11.球
⑴球和它的性質:球體、球面、球的大圓、小圓、球面距離.
⑵球的體積公式和表面積公式.
:常用結論、方法和公式
1.異面直線所成角的求法:
(1)平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;
(2)補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系;
2.直線與平面所成的角
斜線和平面所成的是一個直角三角形的銳角,它的三條邊分別是平面的'垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個特殊點作出平面的垂線段,垂足和斜足的連線,是產生線面角的關鍵;
3.二面角的求法
(1)定義法:直接在二面角的棱上取一點(特殊點),分別在兩個半平面內作棱的垂線,得出平面角,用定義法時,要認真觀察圖形的特性;
(2)三垂線法:已知二面角其中一個面內一點到一個面的垂線,用三垂線定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;
(4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;
特別:對于一類沒有給出棱的二面角,應先延伸兩個半平面,使之相交出現棱,然后再選用上述方法(尤其要考慮射影法)。
4.空間距離的求法
(1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進行計算;
(2)求點到直線的距離,一般用三垂線定理作出垂線再求解;
(3)求點到平面的距離,一是用垂面法,借助面面垂直的性質來作,因此,確定已知面的垂面是關鍵;二是不作出公垂線,轉化為求三棱錐的高,利用等體積法列方程求解;
高中數學知識點總結8
1.定義法:
判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關系畫出箭頭示意圖,再利用定義判斷即可.
2.轉換法:
當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷.
3.集合法
在命題的條件和結論間的關系判斷有困難時,可從集合的.角度考慮,記條件p、q對應的集合分別為A、B,則:
若A∩B,則p是q的充分條件.
若A∪B,則p是q的必要條件.
若A=B,則p是q的充要條件.
若A∈B,且B∈A,則p是q的既不充分也不必要條件.
高中數學知識點總結9
數學知識點1、柱、錐、臺、球的結構特征
(1)棱柱:
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到
截面距離與高的比的平方。
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖
是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。
數學知識點2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。
數學知識點3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
平面
通常用一個平行四邊形來表示。
平面常用希臘字母α、β、γ…或拉丁字母M、N、P來表示,也可用表示平行四邊形的兩個相對頂點字母表示,如平面AC。
在立體幾何中,大寫字母A,B,C,…表示點,小寫字母,a,b,c,…l,m,n,…表示直線,且把直線和平面看成點的集合,因而能借用集合論中的符號表示它們之間的關系,例如:
a) A∈l—點A在直線l上;Aα—點A不在平面α內;
b) lα—直線l在平面α內;
c) aα—直線a不在平面α內;
d) l∩m=A—直線l與直線m相交于A點;
e) α∩l=A—平面α與直線l交于A點;
f) α∩β=l—平面α與平面β相交于直線l。
二、平面的基本性質
公理1如果一條直線上的兩點在一個平面內,那么這條直線上所有的點都在這個平面內。
公理2如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。
公理3經過不在同一直線上的三個點,有且只有一個平面。
根據上面的公理,可得以下推論。
推論1經過一條直線和這條直線外一點,有且只有一個平面。
推論2經過兩條相交直線,有且只有一個平面。
推論3經過兩條平行直線,有且只有一個平面。
公理4平行于同一條直線的兩條直線互相平行
如何讓數學學科預習變得更高效
一、讀一讀。預習時要認真,要逐字逐詞逐句的閱讀,用筆把重點畫出來,重點加以理解。遇到自己解決不了的問題,作出記號,教師講解時作為聽課的重點。
二、想一想。對預習中感到困難的問題要先思考。如果是基礎問題,可以用以前的知識看看能不能弄通。如果是理解上的問題,可以記下來課上認真聽講,通過積極思考去解決。這樣有利于提高對知識的理解,養成學習數學的良好思維習慣。
三、說一說。預習時可能感到認識模糊,可以與父母或同學進行討論,在同學們的合作交流與探討中找到正確的答案。這樣即增加了學生探求新課的興趣,有可以弄懂數學知識的實際用法,對知識有個準確的概念。
四、寫一寫。寫一寫在課前預習中也是很有必要的`,預習時要適當做學習筆記,主要包括看書時的初步體會和心得,讀明白了的問題的理解,對疑難問題的記錄和思考等。
五、做一做。預習應用題,可以用畫線段的方法幫助理解數量間的關系,弄清已知條件和所求問題,找到解題的思路。對于一些有關圖形方面的問題,可以在預習中動手操作,剪剪拼拼,增加感性認識。
六、補一補。數學課新舊知識間往往存在緊密的聯系,預習時如發現學習過的要領有不清楚的地方,一定要在預習時弄明白,并對舊的知識加以鞏固和記憶,同時為學習新的知識打下堅實的基礎。
七、練一練。往往每課時的例題都是很典型的,預習時應把例題都做一遍,加深領悟的能力。如果做題時出現錯誤,要想想錯在哪,為什么錯,怎么改錯。如果仍是找不到錯誤的根源,可在聽課時重點聽,逐步領會。
該怎么提高數學課堂學習效率
課堂學習是學習過程中最基本,最重要的環節,要堅持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以簡單扼要的方法記下聽課的要點,思維方法,以備復習、消化、再思考,但要以聽課為主,記錄為輔;
耳到:專心聽講,聽老師如何講課,如何分析、如何歸納總結。另外,還要聽同學們的解答,看是否對自己有所啟發,特別要注意聽自己預習未看懂的問題;
口到:主動與老師、同學們進行合作、探究,敢于提出問題,并發表自己的看法,不要人云亦云;
眼到:就是一看老師講課的表情,手勢所表達的意思,看老師的演示實驗、板書內容,二看老師要求看的課本內容,把書上知識與老師課堂講的知識聯系起來;
心到:就是課堂上要認真思考,注意理解課堂的新知識,課堂上的思考要主動積極。關鍵是理解并能融匯貫通,靈活使用。對于老師講的新概念,應抓住關鍵字眼,變換角度去理解。
數學復習方法學霸分享
1、重點練習幾種類型的題目
不要鉆偏題、怪題、過難題的牛角尖,根據平時做套卷時的感受,多練習以下幾個類型的題目。
(1)初看沒有思路,但分析后能順利做出的。通過對這類問題的練習,能夠使我們對題目的考點和重點更熟悉,提高建立思路的速度和切入點的準確度,讓我們能在考試中留出更多時間來處理后面難度高、閱讀量大的綜合題。
(2)自己經常出錯的中檔題。中檔題在中考中每年的考查內容都差不多,題目位置也相對固定,屬于解決了一個板塊就能得到相應版塊分數的類型。在中檔題的某個題型經常出錯說明對這部分內容的基本概念和常用方法理解不到位。通過練習,多總結這類題目的解題思路和技巧,把不穩定的得分變成到手的分數。中檔題難度一般不會太高,所以對于自己薄弱的中檔題進行突擊練習一般都會有很好的效果。
(3)基礎相對薄弱的同學也應該做一些常考的題目類型。比如圓的切線的判定以及與圓相關的線段計算、一次函數和反比例函數的綜合、二元一次方程整數根問題等,通過練習,進一步提高我們解決這些問題的熟練度
2、學會看錯題的正確方式
大部分學生都有錯題本,在復習時看錯題本,鞏固自己的錯誤是不錯的復習方式,但在看錯題時一定要杜絕連題目帶答案一起順著看下來的方式。盡量能夠將答案擋住,自己再嘗試做一遍,如果做的過程中遇到問題再去看答案,并做好標注,過兩天再試做一遍,爭取能在期末考試前將之前的錯題整體過兩到三遍、加深印象。
3、認真研究每道題目的考點
做題時,我們心中要對相應題目所對應的考點有所了解,比如填空題中如果出現幾何問題,主要是對圖形基本性質和面積的考察,而很少考到全等三角形的證明(尺規作圖寫依據除外),所以我們在填空題中看到幾何問題,就不用從全等方面找突破口,而是更多地注重圖形的基本性質。比如平行四邊形對角線互相平分、等腰三角形三線合一等。
4、盡量避免只看不算
很多同學在復習時不喜歡動筆,覺得自己看明白了就行,但俗話說“眼過千遍不如手過一遍”,不去實際操作只是看一遍題目,對題目解法和思路的印象其實是很低的。而且在計算過程中還能鍛煉我們的計算能力,提高解題速度和準確性。許多同學在寫證明題時很不熟練,邏輯不順暢,也是由于平時對書寫的不重視,應該趁著期末考試前的時間,多練練書寫。
學好數學要重視“四個依據”是什么
讀好一本教科書——它是教學、考試的主要依據;
記好一本筆記——它是教師多年經驗的結晶;
做好一本習題集——它是知識的拓寬;
記好一本心得筆記——它是你自己的知識。
高中數學知識點總結10
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:1.元素的確定性;2.元素的互異性;3.元素的無序性.
3、集合的表示:(1){?}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}4
.集合的表示方法:列舉法與描述法。
常用數集及其記法:非負整數集(即自然數集)記作:N正整數集N*或N+整數集Z有理數集Q實數集R
5.關于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表
示某些對象是否屬于這個集合的方法。6、集合的分類:
(1).有限集含有有限個元素的集合(2).無限集含有無限個元素的集合
(3).空集不含任何元素的集合例:{x|x2=-5}=Φ
二、集合間的基本關系
1.“包含”關系—子集注意:A?B有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,記作A?
2.“相等”關系:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個集合是它本身的子集。即A?A
②如果A?B,且A?B那就說集合A是集合B的真子集,記作A B(或BA)
③如果A?B,B?C,那么A?C④如果A?B同時B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集與補集(1)補集:設S是一個集合,A是S的一個子集(即A?S),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)記作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,看作一個全集。通常用U來表示。
(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函數的有關概念
合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開方數不小于零;(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1.(5)如果函數是由一些基本函數通過四則運算結合而成的那么,它的定義域是使各部分都有意義的x的值組成的'集合.(6)指數為零底不可以等于零(7)實際問題中的函數的定義域還要保證實際問題有意義.
2.構成函數的三要素:定義域、對應關系和值域
再注意:(1)由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)
3.區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.4.映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A?B為從集合A到集合B的一個映射。記作“f:A?B”
給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對于映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
5.常用的函數表示法:解析法:圖象法:列表法:
6.分段函數在定義域的不同部分上有不同的解析表達式的函數。(1)分段函數是一個函數,不要把它誤認為是幾個函數;
(2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集.7.函數單調性(1).設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1 如果對于區間D上的任意兩個自變量的值x1,x2,當x1 注意:函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質; (2)圖象的特點如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的(3).函數單調區間與單調性的判定方法 (A)定義法:○1任取x1,x2∈D,且x1 8.函數的奇偶性 (1)一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數. 注意:○1函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。 2由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,○ 則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).(3)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱. 總結:利用定義判斷函數奇偶性的格式步驟:○1首先確定函數的定義域,并判斷其定義域是否關于原點對稱;○2確定f(-x)與f(x)的關系;○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.9、函數的解析表達式 (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)。 補充不等式的解法與二次函數(方程)的性質 一、函數對稱性: 1.2.3.4.5.6.7.8. f(a+x)=f(a-x)==>f(x)關于x=a對稱 f(a+x)=f(b-x)==>f(x)關于x=(a+b)/2對稱f(a+x)=-f(a-x)==>f(x)關于點(a,0)對稱f(a+x)=-f(a-x)+2b==>f(x)關于點(a,b)對稱 f(a+x)=-f(b-x)+c==>f(x)關于點[(a+b)/2,c/2]對稱y=f(x)與y=f(-x)關于x=0對稱y=f(x)與y=-f(x)關于y=0對稱y=f(x)與y=-f(-x)關于點(0,0)對稱 例1:證明函數y=f(a+x)與y=f(b-x)關于x=(b-a)/2對稱。 【解析】求兩個不同函數的對稱軸,用設點和對稱原理作解。 證明:假設任意一點P(m,n)在函數y=f(a+x)上,令關于x=t的對稱點Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即證得對稱軸為x=(b-a)/2. 例2:證明函數y=f(a-x)與y=f(xb)關于x=(a+b)/2對稱。 證明:假設任意一點P(m,n)在函數y=f(a-x)上,令關于x=t的對稱點Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即證得對稱軸為x=(a+b)/2. 二、函數的周期性 令a,b均不為零,若: 1、函數y=f(x)存在f(x)=f(x+a)==>函數最小正周期T=|a| 2、函數y=f(x)存在f(a+x)=f(b+x)==>函數最小正周期T=|b-a| 3、函數y=f(x)存在f(x)=-f(x+a)==>函數最小正周期T=|2a| 4、函數y=f(x)存在f(x+a)=1/f(x)==>函數最小正周期T=|2a| 5、函數y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數最小正周期T=|4a| 這里只對第2~5點進行解析。 第2點解析: 令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba 第3點解析:同理,f(x+a)=-f(x+2a)…… ①f(x)=-f(x+a)…… ②∴由①和②解得f(x)=f(x+2a)∴函數最小正周期T=|2a| 第4點解析: f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a) 又∵f(x+a)=1/f(x)∴f(x)=f(x+2a) ∴函數最小正周期T=|2a| 第5點解析: ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1 ∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1] 那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②, 由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a) ∴函數最小正周期T=|4a| 擴展閱讀:函數對稱性、周期性和奇偶性的規律總結 函數對稱性、周期性和奇偶性規律總結 (一)同一函數的函數的奇偶性與對稱性:(奇偶性是一種特殊的對稱性) 1、奇偶性: (1)奇函數關于(0,0)對稱,奇函數有關系式f(x)f(x)0 (2)偶函數關于y(即x=0)軸對稱,偶函數有關系式f(x)f(x) 2、奇偶性的拓展:同一函數的對稱性 (1)函數的'軸對稱: 函數yf(x)關于xa對稱f(ax)f(ax) f(ax)f(ax)也可以寫成f(x)f(2ax)或f(x)f(2ax) 若寫成:f(ax)f(bx),則函數yf(x)關于直線x稱 (ax)(bx)ab對22證明:設點(x1,y1)在yf(x)上,通過f(x)f(2ax)可知,y1f(x1)f(2ax1), 即點(2ax1,y1)也在yf(x)上,而點(x1,y1)與點(2ax1,y1)關于x=a對稱。得證。 說明:關于xa對稱要求橫坐標之和為2a,縱坐標相等。 ∵(ax1,y1)與(ax1,y1)關于xa對稱,∴函數yf(x)關于xa對稱 f(ax)f(ax) ∵(x1,y1)與(2ax1,y1)關于xa對稱,∴函數yf(x)關于xa對稱 f(x)f(2ax) ∵(x1,y1)與(2ax1,y1)關于xa對稱,∴函數yf(x)關于xa對稱 f(x)f(2ax) (2)函數的點對稱: 函數yf(x)關于點(a,b)對稱f(ax)f(ax)2b 上述關系也可以寫成f(2ax)f(x)2b或f(2ax)f(x)2b 若寫成:f(ax)f(bx)c,函數yf(x)關于點(abc,)對稱2證明:設點(x1,y1)在yf(x)上,即y1f(x1),通過f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(2ax1,2by1)也在yf(x)上,而點(2ax1,2by1)與(x1,y1)關于(a,b)對稱。得證。 說明:關于點(a,b)對稱要求橫坐標之和為2a,縱坐標之和為2b,如(ax)與(ax)之和為2a。 (3)函數yf(x)關于點yb對稱:假設函數關于yb對稱,即關于任一個x值,都有兩個y值與其對應,顯然這不符合函數的定義,故函數自身不可能關于yb對稱。但在曲線c(x,y)=0,則有可能會出現關于yb對稱,比如圓c(x,y)x2y240它會關于y=0對稱。 (4)復合函數的奇偶性的性質定理: 性質1、復數函數y=f[g(x)]為偶函數,則f[g(-x)]=f[g(x)]。復合函數y=f[g(x)]為奇函數,則f[g(-x)]=-f[g(x)]。 性質2、復合函數y=f(x+a)為偶函數,則f(x+a)=f(-x+a);復合函數y=f(x+a)為奇函數,則f(-x+a)=-f(a+x)。 性質3、復合函數y=f(x+a)為偶函數,則y=f(x)關于直線x=a軸對稱。復合函數y=f(x+a)為奇函數,則y=f(x)關于點(a,0)中心對稱。 總結:x的系數一個為1,一個為-1,相加除以2,可得對稱軸方程 總結:x的系數一個為1,一個為-1,f(x)整理成兩邊,其中一個的系數是為1,另一個為-1,存在對稱中心。 總結:x的系數同為為1,具有周期性。 (二)兩個函數的圖象對稱性 1、yf(x)與yf(x)關于X軸對稱。 證明:設yf(x)上任一點為(x1,y1)則y1f(x1),所以yf(x)經過點(x1,y1) ∵(x1,y1)與(x1,y1)關于X軸對稱,∴y1f(x1)與yf(x)關于X軸對稱.注:換種說法:yf(x)與yg(x)f(x)若滿足f(x)g(x),即它們關于y0對稱。 函數與導數。主要考查集合運算、函數的有關概念定義域、值域、解析式、函數的極限、連續、導數。 平面向量與三角函數、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。 數列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。 不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。 概率和統計。這部分和我們的生活聯系比較大,屬應用題。 空間位置關系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。 解析幾何。高考的難點,運算量大,一般含參數。 高考對數學基礎知識的`考查,既全面又突出重點,扎實的數學基礎是成功解題的關鍵。 掌握分類計數原理與分步計數原理,并能用它們分析和解決一些簡單的應用問題。 理解排列的意義,掌握排列數計算公式,并能用它解決一些簡單的應用問題。 理解組合的意義,掌握組合數計算公式和組合數的性質,并能用它們解決一些簡單的應用問題。 掌握二項式定理和二項展開式的性質,并能用它們計算和證明一些簡單的問題。 了解隨機事件的發生存在著規律性和隨機事件概率的意義。 了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。 了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。 會計算事件在n次獨立重復試驗中恰好發生k次的概率。 高考數學導數知識點 (一)導數第一定義 設函數y = f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0 + △x也在該鄰域內)時,相應地函數取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y = f(x)在點x0處可導,并稱這個極限值為函數y = f(x)在點x0處的導數記為f'(x0),即導數第一定義 (二)導數第二定義 設函數y = f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x — x0也在該鄰域內)時,相應地函數變化△y = f(x)— f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數y = f(x)在點x0處可導,并稱這個極限值為函數y = f(x)在點x0處的導數記為f'(x0),即導數第二定義 (三)導函數與導數 如果函數y = f(x)在開區間I內每一點都可導,就稱函數f(x)在區間I內可導。這時函數y = f(x)對于區間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函數,稱這個函數為原來函數y = f(x)的導函數,記作y',f'(x),dy/dx,df(x)/dx。導函數簡稱導數。 (四)單調性及其應用 1。利用導數研究多項式函數單調性的一般步驟 (1)求f¢(x) (2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數;若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數 2。用導數求多項式函數單調區間的一般步驟 (1)求f¢(x) (2)f¢(x)>0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間 高中數學重難點知識點 高中數學包含5本必修、2本選修,(理)包含5本必修、3本選修,每學期學習兩本書。 必修一:1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質及應用(比較抽象,較難理解) 必修二:1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角 這部分知識是高一學生的難點,比如:一個角實際上是一個銳角,但是在圖中顯示的鈍角等等一些問題,需要學生的立體意識較強。這部分知識高考占22———27分 2、直線方程:高考時不單獨命題,易和圓錐曲線結合命題 3、圓方程: 必修三:1、算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科占到15分,文科數學占到5分 必修四:1、三角函數:(圖像、性質、高中重難點,)必考大題:15———20分,并且經常和其他函數混合起來考查 2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線結合命題。09年理科占到5分,文科占到13分 必修五:1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數學占到13分左右2、數列:高考必考,17———22分3、不等式:(線性規劃,聽課時易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。 高中數學知識點大全 一、集合與簡易邏輯 1、集合的元素具有確定性、無序性和互異性。 2、對集合,時,必須注意到“極端”情況:或;求集合的子集時是否注意到是任何集合的子集、是任何非空集合的真子集。 3、判斷命題的真假關鍵是“抓住關聯字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”。 4、“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”。 5、四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”。 原命題等價于逆否命題,但原命題與逆命題、否命題都不等價。反證法分為三步:假設、推矛、得果。 6、充要條件 二、函數 1、指數式、對數式, 2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合中的元素必有像,但第二個集合中的元素不一定有原像(中元素的像有且僅有下一個,但中元素的原像可能沒有,也可任意個);函數是“非空數集上的映射”,其中“值域是映射中像集的子集”。 (2)函數圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可任意個。 (3)函數圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數圖像。 3、單調性和奇偶性 (1)奇函數在關于原點對稱的區間上若有單調性,則其單調性完全相同。 偶函數在關于原點對稱的區間上若有單調性,則其單調性恰恰相反。 (2)復合函數的單調性特點是:“同性得增,增必同性;異性得減,減必異性”。 復合函數的奇偶性特點是:“內偶則偶,內奇同外”。復合函數要考慮定義域的變化。(即復合有意義) 4、對稱性與周期性(以下結論要消化吸收,不可強記) (1)函數與函數的圖像關于直線(軸)對稱。 推廣一:如果函數對于一切,都有成立,那么的圖像關于直線(由“和的一半確定”)對稱。 推廣二:函數,的圖像關于直線對稱。 (2)函數與函數的圖像關于直線(軸)對稱。 (3)函數與函數的圖像關于坐標原點中心對稱。 三、數列 1、數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前項和公式的關系 2、等差數列中 (1)等差數列公差的取值與等差數列的單調性。 (2)也成等差數列。 (3)兩等差數列對應項和(差)組成的新數列仍成等差數列。 (4)仍成等差數列。 (5)“首正”的遞等差數列中,前項和的最大值是所有非負項之和;“首負”的遞增等差數列中,前項和的最小值是所有非正項之和; (6)有限等差數列中,奇數項和與偶數項和的存在必然聯系,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和“奇數項和=總項數的一半與其公差的積;若總項數為奇數,則“奇數項和—偶數項和”=此數列的中項。 (7)兩數的等差中項惟一存在。在遇到三數或四數成等差數列時,常考慮選用“中項關系”轉化求解。 (8)判定數列是否是等差數列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數列是等差數列的充要條件主要有這五種形式)。 3、等比數列中: (1)等比數列的符號特征(全正或全負或一正一負),等比數列的首項、公比與等比數列的單調性。 (2)兩等比數列對應項積(商)組成的新數列仍成等比數列。 (3)“首大于1”的正值遞減等比數列中,前項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數列中,前項積的最小值是所有小于或等于1的項的積; (4)有限等比數列中,奇數項和與偶數項和的存在必然聯系,由數列的總項數是偶數還是奇數決定。若總項數為偶數,則“偶數項和”=“奇數項和”與“公比”的積;若總項數為奇數,則“奇數項和“首項”加上“公比”與“偶數項和”積的和。 (5)并非任何兩數總有等比中項。僅當實數同號時,實數存在等比中項。對同號兩實數的等比中項不僅存在,而且有一對。也就是說,兩實數要么沒有等比中項(非同號時),如果有,必有一對(同號時)。在遇到三數或四數成等差數列時,常優先考慮選用“中項關系”轉化求解。 (6)判定數列是否是等比數列的方法主要有:定義法、中項法、通項法、和式法(也就是說數列是等比數列的充要條件主要有這四種形式)。 4、等差數列與等比數列的聯系 (1)如果數列成等差數列,那么數列(總有意義)必成等比數列。 (2)如果數列成等比數列,那么數列必成等差數列。 (3)如果數列既成等差數列又成等比數列,那么數列是非零常數數列;但數列是常數數列僅是數列既成等差數列又成等比數列的必要非充分條件。 (4)如果兩等差數列有公共項,那么由他們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數。 如果一個等差數列與一個等比數列有公共項順次組成新數列,那么常選用“由特殊到一般的方法”進行研討,且以其等比數列的項為主,探求等比數列中那些項是他們的公共項,并構成新的.數列。 5、數列求和的常用方法: (1)公式法:①等差數列求和公式(三種形式), ②等比數列求和公式(三種形式), (2)分組求和法:在直接運用公式法求和有困難時,常將“和式”中“同類項”先合并在一起,再運用公式法求和。 (3)倒序相加法:在數列求和中,若和式中到首尾距離相等的兩項和有其共性或數列的通項與組合數相關聯,則常可考慮選用倒序相加法,發揮其共性的作用求和(這也是等差數列前和公式的推導方法)。 (4)錯位相減法:如果數列的通項是由一個等差數列的通項與一個等比數列的通項相乘構成,那么常選用錯位相減法,將其和轉化為“一個新的的等比數列的和”求解(注意:一般錯位相減后,其中“新等比數列的項數是原數列的項數減一的差”!)(這也是等比數列前和公式的推導方法之一)。 (5)裂項相消法:如果數列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關聯,那么常選用裂項相消法求和 (6)通項轉換法。 四、三角函數 1、終邊與終邊相同(的終邊在終邊所在射線上)。 終邊與終邊共線(的終邊在終邊所在直線上)。 終邊與終邊關于軸對稱 終邊與終邊關于軸對稱 終邊與終邊關于原點對稱 一般地:終邊與終邊關于角的終邊對稱。 與的終邊關系由“兩等分各象限、一二三四”確定。 2、弧長公式:,扇形面積公式:1弧度(1rad)。 3、三角函數符號特征是:一是全正、二正弦正、三是切正、四余弦正。 4、三角函數線的特征是:正弦線“站在軸上(起點在軸上)”、余弦線“躺在軸上(起點是原點)”、正切線“站在點處(起點是)”。務必重視“三角函數值的大小與單位圓上相應點的坐標之間的關系,‘正弦’‘縱坐標’、‘余弦’‘橫坐標’、‘正切’‘縱坐標除以橫坐標之商’”;務必記住:單位圓中角終邊的變化與值的大小變化的關系為銳角 5、三角函數同角關系中,平方關系的運用中,務必重視“根據已知角的范圍和三角函數的取值,精確確定角的范圍,并進行定號”; 6、三角函數誘導公式的本質是:奇變偶不變,符號看象限。 7、三角函數變換主要是:角、函數名、次數、系數(常值)的變換,其核心是“角的變換”! 角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換。 8、三角函數性質、圖像及其變換: (1)三角函數的定義域、值域、單調性、奇偶性、有界性和周期性 注意:正切函數、余切函數的定義域;絕對值對三角函數周期性的影響:一般說來,某一周期函數解析式加絕對值或平方,其周期性是:弦減半、切不變。既為周期函數又是偶函數的函數自變量加絕對值,其周期性不變;其他不定。如的周期都是,但的周期為,y=|tanx|的周期不變,問函數y=cos|x|,,y=cos|x|是周期函數嗎? (2)三角函數圖像及其幾何性質: (3)三角函數圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換。 (4)三角函數圖像的作法:三角函數線法、五點法(五點橫坐標成等差數列)和變換法。 9、三角形中的三角函數: (1)內角和定理:三角形三角和為,任意兩角和與第三個角總互補,任意兩半角和與第三個角的半角總互余。銳角三角形三內角都是銳角三內角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方。 (2)正弦定理:(R為三角形外接圓的半徑)。 (3)余弦定理:常選用余弦定理鑒定三角形的類型。 五、向量 1、向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點、終點及其坐標的特征。 2、幾個概念:零向量、單位向量(與共線的單位向量是,平行(共線)向量(無傳遞性,是因為有)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影(在上的投影是)。 3、兩非零向量平行(共線)的充要條件 4、平面向量的基本定理:如果e1和e2是同一平面內的兩個不共線向量,那么對該平面內的任一向量a,有且只有一對實數,使a= e1+ e2。 5、三點共線; 6、向量的數量積: 六、不等式 1、(1)解不等式是求不等式的解集,最后務必有集合的形式表示;不等式解集的端點值往往是不等式對應方程的根或不等式有意義范圍的端點值。 (2)解分式不等式的一般解題思路是什么?(移項通分,分子分母分解因式,x的系數變為正值,標根及奇穿過偶彈回); (3)含有兩個絕對值的不等式如何去絕對值?(一般是根據定義分類討論、平方轉化或換元轉化); (4)解含參不等式常分類等價轉化,必要時需分類討論。注意:按參數討論,最后按參數取值分別說明其解集,但若按未知數討論,最后應求并集。 2、利用重要不等式以及變式等求函數的最值時,務必注意a,b(或a,b非負),且“等號成立”時的條件是積ab或和a+b其中之一應是定值(一正二定三等四同時)。 3、常用不等式有:(根據目標不等式左右的運算結構選用) a、b、c R,(當且僅當時,取等號) 4、比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數性質法、綜合法、分析法 5、含絕對值不等式的性質: 6、不等式的恒成立,能成立,恰成立等問題 (1)恒成立問題 若不等式在區間上恒成立,則等價于在區間上 若不等式在區間上恒成立,則等價于在區間上 (2)能成立問題 (3)恰成立問題 若不等式在區間上恰成立,則等價于不等式的解集為。 若不等式在區間上恰成立,則等價于不等式的解集為, 七、直線和圓 1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))。應用直線方程的點斜式、斜截式設直線方程時,一般可設直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況? 2、知直線縱截距,常設其方程為或;知直線橫截距,常設其方程為(直線斜率k存在時,為k的倒數)或知直線過點,常設其方程為。 (2)直線在坐標軸上的截距可正、可負、也可為0。直線兩截距相等直線的斜率為—1或直線過原點;直線兩截距互為相反數直線的斜率為1或直線過原點;直線兩截距絕對值相等直線的斜率為或直線過原點。 (3)在解析幾何中,研究兩條直線的位置關系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合。 3、相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是 4、線性規劃中幾個概念:約束條件、可行解、可行域、目標函數、最優解。 5、圓的方程:最簡方程;標準方程; 6、解決直線與圓的關系問題有“函數方程思想”和“數形結合思想”兩種思路,等價轉化求解,重要的是發揮“圓的平面幾何性質(如半徑、半弦長、弦心距構成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!” (1)過圓上一點圓的切線方程 過圓上一點圓的切線方程 過圓上一點圓的切線方程 如果點在圓外,那么上述直線方程表示過點兩切線上兩切點的“切點弦”方程。 如果點在圓內,那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)。 7、曲線與的交點坐標方程組的解; 過兩圓交點的圓(公共弦)系為,當且僅當無平方項時,為兩圓公共弦所在直線方程。 八、圓錐曲線 1、圓錐曲線的兩個定義,及其“括號”內的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(兩相異定點),那么將優先選用圓錐曲線第一定義;如果涉及到其焦點、準線(一定點和不過該點的一定直線)或離心率,那么將優先選用圓錐曲線第二定義;涉及到焦點三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質的應用。 (1)注意:①圓錐曲線第一定義與配方法的綜合運用; ②圓錐曲線第二定義是:“點點距為分子、點線距為分母”,橢圓點點距除以點線距商是小于1的正數,雙曲線點點距除以點線距商是大于1的正數,拋物線點點距除以點線距商是等于1。 2、圓錐曲線的幾何性質:圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點線、圓錐曲線的變化趨勢。其中,橢圓中、雙曲線中。 重視“特征直角三角形、焦半徑的最值、焦點弦的最值及其‘頂點、焦點、準線等相互之間與坐標系無關的幾何性質’”,尤其是雙曲線中焦半徑最值、焦點弦最值的特點。 3、在直線與圓錐曲線的位置關系問題中,有“函數方程思想”和“數形結合思想”兩種思路,等價轉化求解。特別是: ①直線與圓錐曲線相交的必要條件是他們構成的方程組有實數解,當出現一元二次方程時,務必“判別式≥0”,尤其是在應用韋達定理解決問題時,必須先有“判別式≥0”。 ②直線與拋物線(相交不一定交于兩點)、雙曲線位置關系(相交的四種情況)的特殊性,應謹慎處理。 ③在直線與圓錐曲線的位置關系問題中,常與“弦”相關,“平行弦”問題的關鍵是“斜率”、“中點弦”問題關鍵是“韋達定理”或“小小直角三角形”或“點差法”、“長度(弦長)”問題關鍵是長度(弦長)公式 ④如果在一條直線上出現“三個或三個以上的點”,那么可選擇應用“斜率”為橋梁轉化。 4、要重視常見的尋求曲線方程的方法(待定系數法、定義法、直譯法、代點法、參數法、交軌法、向量法等),以及如何利用曲線的方程討論曲線的幾何性質(定義法、幾何法、代數法、方程函數思想、數形結合思想、分類討論思想和等價轉化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發點。 注意:①如果問題中涉及到平面向量知識,那么應從已知向量的特點出發,考慮選擇向量的幾何形式進行“摘帽子或脫靴子”轉化,還是選擇向量的代數形式進行“摘帽子或脫靴子”轉化。 ②曲線與曲線方程、軌跡與軌跡方程是兩個不同的概念,尋求軌跡或軌跡方程時應注意軌跡上特殊點對軌跡的“完備性與純粹性”的影響。 ③在與圓錐曲線相關的綜合題中,常借助于“平面幾何性質”數形結合(如角平分線的雙重身份)、“方程與函數性質”化解析幾何問題為代數問題、“分類討論思想”化整為零分化處理、“求值構造等式、求變量范圍構造不等關系”等等。 九、直線、平面、簡單多面體 1、計算異面直線所成角的關鍵是平移(補形)轉化為兩直線的夾角計算 2、計算直線與平面所成的角關鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理),或先運用等積法求點到直線的距離,后虛擬直角三角形求解。注:一斜線與平面上以斜足為頂點的角的兩邊所成角相等斜線在平面上射影為角的平分線。 3、空間平行垂直關系的證明,主要依據相關定義、公理、定理和空間向量進行,請重視線面平行關系、線面垂直關系(三垂線定理及其逆定理)的橋梁作用。注意:書寫證明過程需規范。 4、直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關于側棱、側面、對角面、平行于底的截面的幾何體性質。 如長方體中:對角線長,棱長總和為,全(表)面積為,(結合可得關于他們的等量關系,結合基本不等式還可建立關于他們的不等關系式), 如三棱錐中:側棱長相等(側棱與底面所成角相等)頂點在底上射影為底面外心,側棱兩兩垂直(兩對對棱垂直)頂點在底上射影為底面垂心,斜高長相等(側面與底面所成相等)且頂點在底上在底面內頂點在底上射影為底面內心。 5、求幾何體體積的常規方法是:公式法、割補法、等積(轉換)法、比例(性質轉換)法等。注意:補形:三棱錐三棱柱平行六面體 6、多面體是由若干個多邊形圍成的幾何體。棱柱和棱錐是特殊的多面體。 正多面體的每個面都是相同邊數的正多邊形,以每個頂點為其一端都有相同數目的棱,這樣的多面體只有五種,即正四面體、正六面體、正八面體、正十二面體、正二十面體。 7、球體積公式。球表面積公式,是兩個關于球的幾何度量公式。它們都是球半徑及的函數。 十、導數 1、導數的意義:曲線在該點處的切線的斜率(幾何意義)、瞬時速度、邊際成本(成本為因變量、產量為自變量的函數的導數,C為常數) 2、多項式函數的導數與函數的單調性 在一個區間上(個別點取等號)在此區間上為增函數。 在一個區間上(個別點取等號)在此區間上為減函數。 3、導數與極值、導數與最值: (1)函數處有且“左正右負”在處取極大值; 函數在處有且左負右正”在處取極小值。 注意:①在處有是函數在處取極值的必要非充分條件。 ②求函數極值的方法:先找定義域,再求導,找出定義域的分界點,列表求出極值。特別是給出函數極大(小)值的條件,一定要既考慮,又要考慮驗“左正右負”(“左負右正”)的轉化,否則條件沒有用完,這一點一定要切記。 ③單調性與最值(極值)的研究要注意列表! (2)函數在一閉區間上的最大值是此函數在此區間上的極大值與其端點值中的“最大值” 函數在一閉區間上的最小值是此函數在此區間上的極小值與其端點值中的“最小值”; 注意:利用導數求最值的步驟:先找定義域再求出導數為0及導數不存在的的點,然后比較定義域的端點值和導數為0的點對應函數值的大小,其中最大的就是最大值,最小就為最小。 集合的分類: (1)按元素屬性分類,如點集,數集。 (2)按元素的個數多少,分為有/無限集 關于集合的概念: (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。 (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的.任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。 (3)無序性:判斷一些對象時候構成集合,關鍵在于看這些對象是否有明確的標準。 集合可以根據它含有的元素的個數分為兩類: 含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。 非負整數全體構成的集合,叫做自然數集,記作N。 在自然數集內排除0的集合叫做正整數集,記作N+或N_。 整數全體構成的集合,叫做整數集,記作Z。 有理數全體構成的集合,叫做有理數集,記作Q。(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。) 實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的'點一一對應的數。) 1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}。 有些集合的元素較多,元素的排列又呈現一定的規律,在不致于發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。 例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}。 無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}。 2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質來描述。 例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大于0” 而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。 一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質p(x),而不屬于集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特征性質。于是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質描述法,簡稱描述法。 例如:集合A={x∈R│x2—1=0}的特征是X2—1=0 1、算法的概念: ①由基本運算及規定的運算順序所構成的完整的解題步驟,或者是按照要求設計好的有限的計算序列,并且這樣的步驟或序列能解決一類問題。 ②算法的五個重要特征: ⅰ有窮性:一個算法必須保證執行有限步后結束; ⅱ確切性:算法的每一步必須有確切的定義; ⅲ可行性:算法原則上能夠精確地運行,而且人們用筆和紙做有限次即可完成; ⅳ輸入:一個算法有0個或多個輸入,以刻劃運算對象的初始條件。所謂0個輸入是指算法本身定出了初始條件。 ⅴ輸出:一個算法有1個或多個輸出,以反映對輸入數據加工后的結果。沒有輸出的算法是毫無意義的。 2、程序框圖也叫流程圖,是人們將思考的過程和工作的順序進行分析、整理,用規定的文字、符號、圖形的組合加以直觀描述的方法 (1)程序框圖的基本符號: (2)畫流程圖的基本規則: ①使用標準的框圖符號 ②從上倒下、從左到右 ③開始符號只有一個退出點,結束符號只有一個進入點,判斷符號允許有多個退出點 ④判斷可以是兩分支結構,也可以是多分支結構 ⑤語言簡練 ⑥循環框可以被替代 3、三種基本的邏輯結構:順序結構、條件結構和循環結構 (1)順序結構: 順序結構描述的是是最簡單的算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的。 (2)條件結構:分支結構的一般形式 兩種結構的共性: ①一個入口,一個出口。特別注意:一個判斷框可以有兩個出口,但一個條件分支結構只有一個出口。 ②結構中每個部分都有可能被執行,即對每一個框都有從入口進、出口出的路徑。 以上兩點是用來檢查流程圖是否合理的基本方法(當然,學習循環結構后,循環結構也有此特點) (3)循環結構的一般形式: 在一些算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。 循環結構又稱重復結構,循環結構可細分為兩類: ①如左下圖所示,它的功能是當給定的條件成立時,執行A框,框執行完畢后,再判斷條件是否成立,如果仍然成立,再執行A框,如此反復執行框,直到某一次條件不成立為止,此時不再執行A框,從b離開循環結構。 ②如右上圖所示,它的功能是先執行,然后判斷給定的條件是否成立,如果仍然不成立,則繼續執行A框,直到某一次給定的條件成立為止,此時不再執行A框,從b點離開循環結構。 高中數學算法初步知識點:算法的基本語句 (1)賦值語句:在表述一個算法時,經常要引入變量,并賦給該變量一個值,用來表明賦給某一個變量的一個具體的確定值的語句叫做賦值語句。 賦值語句的一般格式:變量名表達式 ①=的意義和作用:賦值語句中的=號,稱作賦值號。 ②賦值語句的作用:先計算出賦值號右邊表達式的值,然后把該值賦給賦值號左邊的變量,使該變量的值等于表達式的值。 ③關于賦值語句,需要注意幾點: ⅰ賦值號左邊只能是變量名,而不是表達式。例如3。6=X,5=y;都是錯誤的 ⅱ賦值號左右不能對換:賦值語句是將賦值號右邊的表達式賦值給賦值號左邊的變量,例如:Y=X,表示用X的值替代變量Y原先的取值,不能改寫成X=Y,因為后者表示用Y的值替代變量X的值。 ⅲ不能利用賦值語句進行代數式(或符號)的演算:在賦值語句中的賦值符號右邊的表達式中的每一個變量都必須事先賦值給確定的'值,不能用賦值語句進行如化簡、因式分解等演算,在一個賦值語句中只能給一個變量賦值,不能出現兩個或多個=。 ⅳ賦值號和數學中的等號的意義不同:賦值號左邊的變量如果原來沒有值,則在執行賦值語句后,獲得一個值。例如X=5;Y=1等;如果原來已經有值,則執行該語句后,以賦值號右邊表達式的值代替該變量的原值,即將原值沖掉。例如:N=N+1在數學中是不成立的,但在賦值語句中,意思是將N的原值加1再賦給N,即N的值增加1。 計算機執行這種形式的條件語句時,也是首先對IF后的條件進行判斷,如果條件符合,就執行語句,如果條件不符合,則直接結束該條件語句,轉而執行其他語句。其對應的程序框圖為:(如下圖) 條件語句的作用:在程序執行過程中,根據判斷是否滿足約定的條件而決定是否需要轉換到何處去。需要計算機按條件進行分析、比較、判斷,并按判斷后的不同情況進行不同的處理。 (3)循環結構: 算法中的循環結構是由循環語句來實現的。對應于程序框圖中的兩種循環結構,一般程序設計語言中也有當型(WHILE型)和直到型(for型)兩種語句結構。即WHILE語句和UNTIL語句。 ①WHILE語句的一般格式是: 其中循環體是由計算機反復執行的一組語句構成的。WHLIE后面的條件是用于控制計算機執行循環體或跳出循環體的。 當計算機遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執行WHILE與END之間的循環體;然后再檢查上述條件,如果條件仍符合,再次執行循環體,這個過程反復進行,直到某一次條件不符合為止。這時,計算機將不執行循環體,直接跳到END語句后,接著執行END之后的語句。其對應的程序結構框圖為:(如下圖) 其對應的程序結構框圖為:(如上圖) 從for型循環結構分析,計算機執行該語句時,先把初始值賦給循環變量,記下終值和步長,并比較初值和中止,如果初值超過終值,就執行end以后的語句,否則執行for語句下面的語句,執行到end語句時,計算機讓循環變量增加一個步長值,然后用增值后的循環變量值與終值比較,如果超過終值,就執行for語句以后的語句。是先執行循環體后進行條件判斷的循環語句。 高中數學算法初步知識點:復習點睛 1、什么是算法:一般地,算法是指在解決問題時按照某種機械程序步驟一定可以得到結果的處理過程。這種程序必須是確定的、有效的、有限的。要了解算法的基本思想、基本結構、程序框圖、基本語句、算法案例等。 2、四種基本的程序框: 4、基本算法語句:賦值語句、條件語句、循環語句; 5、解決分段函數的求值等問題,一般可采用條件結構來設計算法; 6、對于有規律的計算問題,一般可采用循環結構設計算法; 7、在WHILE語句中,是當條件滿足時執行循環體,而在for語句中,是當條件不滿足時執行循環體 【高中數學知識點總結】相關文章: 高中數學的知識點總結04-10 高中數學導數知識點總結02-11 高中數學全部知識點總結02-20 高中數學知識點的總結03-13 高中數學知識點的總結12-19 高中數學基本的知識點總結09-28 高中數學知識點總結05-15 高中數學知識點的總結05-24 高中數學復數知識點總結04-16 高中數學知識點總結09-22高中數學知識點總結11
高中數學知識點總結12
高中數學知識點總結13
高中數學知識點總結14
高中數學知識點總結15