初中數(shù)學(xué)知識點(diǎn)總結(jié)

    時(shí)間:2025-03-07 08:32:03 知識點(diǎn)總結(jié) 我要投稿

    初中數(shù)學(xué)知識點(diǎn)總結(jié)(15篇)

      總結(jié)是事后對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯(cuò)誤,提高工作效益,讓我們抽出時(shí)間寫寫總結(jié)吧。那么總結(jié)有什么格式呢?以下是小編收集整理的初中數(shù)學(xué)知識點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。

    初中數(shù)學(xué)知識點(diǎn)總結(jié)(15篇)

    初中數(shù)學(xué)知識點(diǎn)總結(jié)1

      一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強(qiáng)。甚至有存在探究題目出現(xiàn)。

      主要考察內(nèi)容:

      ①會畫一次函數(shù)的圖像,并掌握其性質(zhì)。

      ②會根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

      ③能用一次函數(shù)解決實(shí)際問題。

      ④考察一ic函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。

      突破方法:

      ①正確理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

      ②運(yùn)用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。

      ③掌握用待定系數(shù)法球一次函數(shù)解析式。

      ④做一些綜合題的訓(xùn)練,提高分析問題的能力。

      函數(shù)性質(zhì):

      1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。

      2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。

      3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

      4.在兩個(gè)一次函數(shù)表達(dá)式中:

      當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

      1、作法與圖形:通過如下3個(gè)步驟:

      (1)列表.

      (2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點(diǎn)畫直線即可。

      正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點(diǎn)的一條直線,一般取(0,0)和(1,k)兩點(diǎn)。(3)連線,可以作出一次函數(shù)的`圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).

      2、性質(zhì):

      (1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

      (2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點(diǎn)。

      3、函數(shù)不是數(shù),它是指某一變化過程中兩個(gè)變量之間的關(guān)系。

      4、k,b與函數(shù)圖像所在象限:

      y=kx時(shí)(即b等于0,y與x成正比例):

      當(dāng)k>0時(shí),直線必通過第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過第一、二、三象限;當(dāng)k>0,b

    初中數(shù)學(xué)知識點(diǎn)總結(jié)2

      1、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

      2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合4、同圓或等圓的半徑相等

      5、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

      8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

      9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

      10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧11、推論1:

      ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

      ③平分弦所對的一條弧的'直徑,垂直平分弦,并且平分弦所對的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對稱中心的中心對稱圖形

      14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

      16、定理:一條弧所對的圓周角等于它所對的圓心角的一半

      17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

      18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

      20、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

      21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

      22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)25、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

      26、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

      27、圓的外切四邊形的兩組對邊的和相等

      28、弦切角定理:弦切角等于它所夾的弧對的圓周角

      29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

      32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)

      33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等

      34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上35、①兩圓外離dR+r②兩圓外切d=R+r

      ③兩圓相交R-rdR+r(Rr)④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)

      36、定理:相交兩圓的連心線垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):

      ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

      ⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

      38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

      39、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

      41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長42、正三角形面積√3a/4a表示邊長

      43、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長計(jì)算公式:L=n兀R/180

      45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

    初中數(shù)學(xué)知識點(diǎn)總結(jié)3

      1、一元二次方程解法:

      (1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1

      (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b2-4ac≥0

      若b2-4ac>0則有兩個(gè)不相等的'實(shí)根,若b2-4ac=0則有兩個(gè)相等的實(shí)根,若b2-4ac<0則無解

      若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

      (3)分解因式法

      ①提公因式法:ma+mb=0→m(a+b)=0

      平方差公式:a2-b2=0→(a+b)(a-b)=0

      ②運(yùn)用公式法:

      完全平方公式:a2±2ab+b2=0→(a±b)2=0

      ③十字相乘法

      2、銳角三角函數(shù)定義

      銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

      正弦(sin):對邊比斜邊,即sinA=a/c;

      余弦(cos):鄰邊比斜邊,即cosA=b/c;

      正切(tan):對邊比鄰邊,即tanA=a/b;

      余切(cot):鄰邊比對邊,即cotA=b/a;

      3、積的關(guān)系

      sinα=tanα·cosα

      cosα=cotα·sinα

      tanα=sinα·secα

      cotα=cosα·cscα

      secα=tanα·cscα

      cscα=secα·cotα

      4、倒數(shù)關(guān)系

      tanα·cotα=1

      sinα·cscα=1

      cosα·secα=1

      5、兩角和差公式

      sin(A+B) = sinAcosB+cosAsinB

      sin(A-B) = sinAcosB-cosAsinB

      cos(A+B) = cosAcosB-sinAsinB

      cos(A-B) = cosAcosB+sinAsinB

      tan(A+B) = (tanA+tanB)/(1-tanAtanB)

      tan(A-B) = (tanA-tanB)/(1+tanAtanB)

      cot(A+B) = (cotAcotB-1)/(cotB+cotA)

      cot(A-B) = (cotAcotB+1)/(cotB-cotA)

    初中數(shù)學(xué)知識點(diǎn)總結(jié)4

      1.相似三角形定義:

      對應(yīng)角相等,對應(yīng)邊成比例的三角形,叫做相似三角形。

      2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。

      3.相似三角形的相似比:

      相似三角形的對應(yīng)邊的比叫做相似比。

      4.相似三角形的預(yù)備定理:

      平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。

      從表中可以看出只要將全等三角形判定定理中的"對應(yīng)邊相等"的條件改為"對應(yīng)邊

      成比例"就可得到相似三角形的判定定理,這就是我們數(shù)學(xué)中的用類比的方法,在舊知識的基礎(chǔ)上找出新知識并從中探究新知識掌握的方法。

      6.直角三角形相似:

      (1)直角三角形被斜邊上的高分成兩個(gè)直角三角形和原三角形相似。

      (2)如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似。

      7.相似三角形的性質(zhì)定理:

      (1)相似三角形的對應(yīng)角相等。

      (2)相似三角形的'對應(yīng)邊成比例。

      (3)相似三角形的對應(yīng)高線的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于相似比。

      (4)相似三角形的周長比等于相似比。

      (5)相似三角形的面積比等于相似比的平方。

      8. 相似三角形的傳遞性

      如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

    初中數(shù)學(xué)知識點(diǎn)總結(jié)5

      一、特殊的平行四邊形:

      1.矩形:

      (1)定義:有一個(gè)角是直角的平行四邊形。

      (2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對角線平分且相等。

      (3)判定定理:

      ①有一個(gè)角是直角的平行四邊形叫做矩形。

      ②對角線相等的平行四邊形是矩形。

      ③有三個(gè)角是直角的四邊形是矩形。

      直角三角形的性質(zhì):直角三角形中所對的直角邊等于斜邊的一半。

      2.菱形:

      (1)定義:鄰邊相等的平行四邊形。

      (2)性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

      (3)判定定理:

      ①一組鄰邊相等的平行四邊形是菱形。

      ②對角線互相垂直的平行四邊形是菱形。

      ③四條邊相等的四邊形是菱形。

      (4)面積:

      3.正方形:

      (1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。

      (2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對角線互相垂直平分。正方形既是矩形,又是菱形。

      (3)正方形判定定理:

      ①對角線互相垂直平分且相等的四邊形是正方形;

      ②一組鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;

      ③對角線互相垂直的矩形是正方形;

      ④鄰邊相等的矩形是正方形

      ⑤有一個(gè)角是直角的菱形是正方形;

      ⑥對角線相等的菱形是正方形。

      二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:

      1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎(chǔ)上擴(kuò)充來的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線方面具有比平行四邊形更多的'特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對角線方面都具有比平行四邊形更多的特性。

      2.矩形、菱形的判定可以根據(jù)出發(fā)點(diǎn)不同而分成兩類:一類是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。

      三、判定一個(gè)四邊形是特殊四邊形的步驟:

      常見考法

      (1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計(jì)算;

      (2)靈活運(yùn)用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;

      (3)一些折疊問題;

      (4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設(shè)置許多考題。

      誤區(qū)提醒

      (1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現(xiàn)混淆;

      (2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現(xiàn)混淆;

      (3)不能正確的理解和運(yùn)用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);

      (4)再利用對角線長度求菱形的面積時(shí),忘記乘;

      (5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。

    初中數(shù)學(xué)知識點(diǎn)總結(jié)6

      三角和的公式

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      倍角公式

      tan2A = 2tanA/(1-tan2 A)

      Sin2A=2SinA?CosA

      Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

      三倍角公式

      sin3A = 3sinA-4(sinA)3;

      cos3A = 4(cosA)3 -3cosA

      tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

      三角函數(shù)特殊值

      α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

      α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

      α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

      a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

      α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

      α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

      α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

      α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

      α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

      α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

      α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

      α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

      三角函數(shù)記憶順口溜

      1三角函數(shù)記憶口訣

      “奇、偶”指的是π/2的倍數(shù)的.奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負(fù)號。

      以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負(fù),所以右邊為-sinα。

      2符號判斷口訣

      全,S,T,C,正。這五個(gè)字口訣的意思就是說:第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

      也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應(yīng)象限三角函數(shù)為正值的名稱。口訣中未提及的都是負(fù)值。

      “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應(yīng)的三角函數(shù)為正值。

      3三角函數(shù)順口溜

      三角函數(shù)是函數(shù),象限符號坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

      同角關(guān)系很重要,化簡證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

      中心記上數(shù)字一,連結(jié)頂點(diǎn)三角形。向下三角平方和,倒數(shù)關(guān)系是對角,

      頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,

      變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

      將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,

      余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

      計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

      逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

      萬能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

      一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

      三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

      利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

    初中數(shù)學(xué)知識點(diǎn)總結(jié)7

      誘導(dǎo)公式的本質(zhì)

      所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

      常用的誘導(dǎo)公式

      公式一: 設(shè)為任意角,終邊相同的角的'同一三角函數(shù)的值相等:

      sin(2k)=sin kz

      cos(2k)=cos kz

      tan(2k)=tan kz

      cot(2k)=cot kz

      公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

      sin()=-sin

      cos()=-cos

      tan()=tan

      cot()=cot

      公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

      sin(-)=-sin

      cos(-)=cos

      tan(-)=-tan

      cot(-)=-cot

      公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

      sin()=sin

      cos()=-cos

      tan()=-tan

      cot()=-cot

    初中數(shù)學(xué)知識點(diǎn)總結(jié)8

      知識點(diǎn)總結(jié)

      1.定義:兩組對邊分別平行的四邊形叫平行四邊形

      2.平行四邊形的性質(zhì)

      (1)平行四邊形的對邊平行且相等;

      (2)平行四邊形的鄰角互補(bǔ),對角相等;

      (3)平行四邊形的對角線互相平分;

      3.平行四邊形的判定

      平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

      第一類:與四邊形的.對邊有關(guān)

      (1)兩組對邊分別平行的四邊形是平行四邊形;

      (2)兩組對邊分別相等的四邊形是平行四邊形;

      (3)一組對邊平行且相等的四邊形是平行四邊形;

      第二類:與四邊形的對角有關(guān)

      (4)兩組對角分別相等的四邊形是平行四邊形;

      第三類:與四邊形的對角線有關(guān)

      (5)對角線互相平分的四邊形是平行四邊形

      常見考法

      (1)利用平行四邊形的性質(zhì),求角度、線段長、周長;

      (2)求平行四邊形某邊的取值范圍;

      (3)考查一些綜合計(jì)算問題;

      (4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;

      (5)利用判定定理證明四邊形是平行四邊形。

      誤區(qū)提醒

      (1)平行四邊形的性質(zhì)較多,易把對角線互相平分,錯(cuò)記成對角線相等;

      (2)“一組對邊平行且相等的四邊形是平行四邊形”錯(cuò)記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。

    初中數(shù)學(xué)知識點(diǎn)總結(jié)9

      k0時(shí),y隨x的增大而減小,直線一定過二、四象限(3)若直線l1:yk1xb1l2:yk2xb2

      當(dāng)k1k2時(shí),l1//l2;當(dāng)b1b2b時(shí),l1與l2交于(0,b)點(diǎn)。

      (4)當(dāng)b>0時(shí)直線與y軸交于原點(diǎn)上方;當(dāng)b學(xué)大教育

      (1)是中心對稱圖形,對中稱心是原點(diǎn)(2)對稱性:是軸直線yx和yx(2)是軸對稱圖形,對稱k0時(shí)兩支曲線分別位于一、三象限且每一象限內(nèi)y隨x的增大而減小(3)

      k0時(shí)兩支曲線分別位于二、四象限且每一象限內(nèi)y隨x的增大而增大(4)過圖象上任一點(diǎn)作x軸與y軸的垂線與坐標(biāo)軸構(gòu)成的矩形面積為|k|。

      P(1)應(yīng)用在u3.應(yīng)用(2)應(yīng)用在(3)其它F上SS上t其要點(diǎn)是會進(jìn)行“數(shù)結(jié)形合”來解決問題二、二次函數(shù)

      1.定義:應(yīng)注意的問題

      (1)在表達(dá)式y(tǒng)=ax2+bx+c中(a、b、c為常數(shù)且a≠0)(2)二次項(xiàng)指數(shù)一定為22.圖象:拋物線

      3.圖象的性質(zhì):分五種情況可用表格來說明表達(dá)式(1)y=ax2頂點(diǎn)坐標(biāo)對稱軸(0,0)最大(小)值y最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的增大而減小直線x=0(y軸)①若a>0,則x=0時(shí),若a>0,則x>0時(shí),y②若a0,則x=0時(shí),①若a>0,則x>0時(shí),y②若a0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a學(xué)大教育

      表達(dá)式h)2+k頂點(diǎn)坐標(biāo)對稱軸直線x=h最大(小)值y最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時(shí),①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a0,則x=4acb24ay最小=4acb24ab時(shí),y隨x的增大而增大時(shí),②若a2a2a時(shí),y隨x的增大而減小b②若a學(xué)大教育

      一次函數(shù)圖象和性質(zhì)

      【知識梳理】

      1.正比例函數(shù)的一般形式是y=kx(k≠0),一次函數(shù)的一般形式是y=kx+b(k≠0).2.一次函數(shù)ykxb的圖象是經(jīng)過(3.一次函數(shù)ykxb的圖象與性質(zhì)

      圖像的大致位置經(jīng)過象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的.增大性質(zhì)而而而而

      【思想方法】數(shù)形結(jié)合

      k、b的符號k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點(diǎn)的一條直線.k反比例函數(shù)圖象和性質(zhì)

      【知識梳理】

      1.反比例函數(shù):一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=或(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù).2.反比例函數(shù)的圖象和性質(zhì)

      k的符號k>0yoxk<0yox

      圖像的大致位置經(jīng)過象限性質(zhì)

      第象限在每一象限內(nèi),y隨x的增大而第象限在每一象限內(nèi),y隨x的增大而3.k的幾何含義:反比例函數(shù)y=的幾何意義,即過雙曲線y=

      k(k≠0)中比例系數(shù)kxk(k≠0)上任意一點(diǎn)P作x4

      x軸、y軸垂線,設(shè)垂足分別為A、B,則所得矩形OAPB

      函數(shù)學(xué)習(xí)方法學(xué)大教育

      的面積為.

      【思想方法】數(shù)形結(jié)合

      二次函數(shù)圖象和性質(zhì)

      【知識梳理】

      1.二次函數(shù)ya(xh)2k的圖像和性質(zhì)

      圖象開口對稱軸頂點(diǎn)坐標(biāo)最值增減性

      在對稱軸左側(cè)在對稱軸右側(cè)當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當(dāng)x=時(shí),y有最值y隨x的增大而y隨x的增大而銳角三角函數(shù)

      【思想方法】

      1.常用解題方法設(shè)k法2.常用基本圖形雙直角

      【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=

      14,則tanB=______;(2)若cosA=,則tanB=______.255

      函數(shù)學(xué)習(xí)方法學(xué)大教育

      例題2.(1)已知:cosα=

      23,則銳角α的取值范圍是()A.0°

    初中數(shù)學(xué)知識點(diǎn)總結(jié)10

      1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

      2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      推論1

      ①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

      ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

      ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      推論2

      圓的兩條平行弦所夾的弧相等

      3、圓是以圓心為對稱中心的中心對稱圖形

      4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

      5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

      6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

      7、同圓或等圓的半徑相等

      8、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

      9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的.其余各組量都相等。

      11、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角

      12、①直線L和⊙O相交d

      ②直線L和⊙O相切d=r

      ③直線L和⊙O相離d>r

      13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

      14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑

      15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

      16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

      17、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

      18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

      19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

      20、

      ①兩圓外離d>R+r

      ②兩圓外切d=R+r

      ③兩圓相交R-rr)

      ④兩圓內(nèi)切d=R-r(R>r)

      ⑤兩圓內(nèi)含dr)

    初中數(shù)學(xué)知識點(diǎn)總結(jié)11

      1、乘法與因式分解

      a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)

      2、三角不等式

      |a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

      |a-b|≥|a|-|b|-|a|≤a≤|a|

      3、一元二次方程的解

      -b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

      4、根與系數(shù)的關(guān)系

      X1+X2=-b/a X1*X2=c/a注:韋達(dá)定理

      5、判別式

      ①b2-4a=0注:方程有相等的兩實(shí)根

      ②b2-4ac>0注:方程有一個(gè)實(shí)根

      ③b2-4ac<0注:方程有共軛復(fù)數(shù)根

      6、三角函數(shù)公式

      ①兩角和公式

      sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

      cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

      ②倍角公式

      tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

      cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

      ③半角公式

      sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

      cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

      tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

      ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

      ④和差化積

      2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

      2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

      sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

      ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

      ⑤某些數(shù)列前n項(xiàng)和

      1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

      1+3+5+7+9+11+13+15+…+(2n-1)=n2

      2+4+6+8+10+12+14+…+(2n)=n(n+1)

      12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

      13+23+33+43+53+63+…n3=n2(n+1)2/4

      1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

      ⑥正弦定理

      a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

      ⑦余弦定理

      b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

      ⑧圓的方程

      圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

      圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

      ⑨立體體積與側(cè)面積

      直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h

      正棱錐側(cè)面積S=1/2c*h'正棱臺側(cè)面積S=1/2(c+c')h'

      圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2

      圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l

      弧長公式l=a*r a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

      錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h

      斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長

      柱體體積公式V=s*h圓柱體V=pi*r2h

      二、初中幾何公式

      1、平行線證明

      ①經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

      ②如果兩條直線都和第三條直線平行,這兩條直線也互相平行

      ③同位角相等,兩直線平行

      ④內(nèi)錯(cuò)角相等,兩直線平行

      ⑤同旁內(nèi)角互補(bǔ),兩直線平行

      ⑥兩直線平行,同位角相等

      ⑦兩直線平行,內(nèi)錯(cuò)角相等

      ⑧兩直線平行,同旁內(nèi)角互補(bǔ)

      2、全等三角形證明

      ①邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等

      ②角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等

      ③推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等

      ④邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個(gè)三角形全等

      ⑤斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等

      3、三角形基本定理

      ①定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

      ②定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

      ③角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

      ④等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)

      ⑤推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

      ⑥等腰三角形的頂角平分線、底邊上的`中線和底邊上的高互相重合

      ⑦推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

      ⑧等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

      ⑨直角三角形

      4、多邊形定理

      ①定理四邊形的內(nèi)角和等于360°

      ②四邊形的外角和等于360°

      ③多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

      ④推論任意多邊的外角和等于360°

      5、平行四邊形證明與等腰梯形證明

      ①平行四邊形性質(zhì)定理1平行四邊形的對角相等

      ②平行四邊形性質(zhì)定理2平行四邊形的對邊相等

      ③平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

      ……

      ④矩形性質(zhì)定理1矩形的四個(gè)角都是直角

      ⑤矩形性質(zhì)定理2矩形的對角線相等

      ……

      ⑥等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

      ⑦等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

      ⑧推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

      ⑨推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

      7、相似三角形證明

      ①相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)

      ②判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

      ③判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

      ④定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似

      ⑤性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

      ⑥性質(zhì)定理2相似三角形周長的比等于相似比

      ⑦性質(zhì)定理3相似三角形面積的比等于相似比的平方

      8、弦和圓的證明

      ①定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

      ②垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      ③推論1

      平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

      弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

      平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      ④推論2圓的兩條平行弦所夾的弧相等

      ⑤圓是以圓心為對稱中心的中心對稱圖形

      ⑥定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦

      相等,所對的弦的弦心距相等

      ⑦線與圓的位置關(guān)系

      直線L和⊙O相交d

      直線L和⊙O相切d=r

      直線L和⊙O相離d>r

      ⑧圓與圓之間的位置關(guān)系

      兩圓外離d>R+r②兩圓外切d=R+r

      兩圓相交R-r

      兩圓內(nèi)切d=R-r(R>r)

      兩圓內(nèi)含dr)

      QQ截圖20150129173906.jpg

      三、數(shù)學(xué)學(xué)習(xí)方法

      1、突出一個(gè)“勤”字(克服一個(gè)“惰”字)

      數(shù)學(xué)家華羅庚曾經(jīng)說過:“聰明在于學(xué)習(xí),天才在于勤奮”,“勤能補(bǔ)拙是良訓(xùn),一分辛勞一分才“:我們在學(xué)習(xí)的時(shí)候要突出一個(gè)勤字,克服一個(gè)“懶”字,怎么突出“勤”字,從這個(gè)字面上來看,要做到五勤:“耳勤”“眼勤”(耳朵聽,眼睛看,接受信息)

      “口勤”(討論,回答問題,而不是講話,消化信息)“腦勤”(善于思考問題,積極思考問題——吸收、儲存信息)那是不是做到以上四點(diǎn)就行了呢?不是。這個(gè)字還有缺陷,在聰下面加上“手”

      “手勤”(動手多實(shí)踐,不僅光做題,做課件,做模型)

      這樣的人聰明不聰明?

      最大的提高學(xué)習(xí)效率,首先要做到——上課認(rèn)真聽講(這是根本)回家先復(fù)習(xí)再做題如果課聽不好,就別想消化知識

      2、學(xué)好初中數(shù)學(xué)還有兩個(gè)要點(diǎn),要狠抓兩個(gè)要點(diǎn):

      學(xué)好數(shù)學(xué),一要(動手),二要(動腦)。動腦就是要學(xué)會觀察分析問題,學(xué)會思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問幾個(gè)為什么。動手就是多實(shí)踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)。同學(xué)就是“題不離手”,這兩個(gè)要點(diǎn)大家要記住。“動腦又動手,才能最大地發(fā)揮大腦的效率”

      3、做到“三個(gè)一遍”

      大家聽過“失敗是成功之母”聽過“重復(fù)是學(xué)習(xí)之母”嗎?培根(18-19世紀(jì)英國的哲學(xué)家)——“知識就是力量”,“重復(fù)是學(xué)習(xí)之母”。如何重復(fù),我給你們解釋一下:

      “上課要認(rèn)真聽一遍,動手推一遍,想一遍”

      “下課看”

      “考試前”

      4、重視“四個(gè)依據(jù)”

      讀好一本教科書——它是教學(xué)、中考的主要依據(jù);

      記好一本筆記——它是教師多年經(jīng)驗(yàn)的結(jié)晶;

      做好做凈一本習(xí)題集——它是使知識拓寬;

      記好一本心得筆記,最好每人自己準(zhǔn)備一本錯(cuò)題集

    初中數(shù)學(xué)知識點(diǎn)總結(jié)12

      1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

      2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

      3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1 ……(檢驗(yàn)方程的解)。

      4.列一元一次方程解應(yīng)用題:

      (1)讀題分析法:多用于“和,差,倍,分問題”

      仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

      (2)畫圖分析法:多用于“行程問題”

      利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的`基礎(chǔ)。

      11.列方程解應(yīng)用題的常用公式:

      (1)行程問題:距離=速度·時(shí)間;

      (2)工程問題:工作量=工效·工時(shí);

      (3)比率問題:部分=全體·比率;

      (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

      (5)商品價(jià)格問題:售價(jià)=定價(jià)·折·,利潤=售價(jià)—成本,;

      (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

      S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

      本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動和合作交流,讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,提升能力,體會數(shù)學(xué)思想方法。

    初中數(shù)學(xué)知識點(diǎn)總結(jié)13

      第一章 豐富的圖形世界

      1、幾何圖形

      從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。

      2、點(diǎn)、線、面、體

      (1)幾何圖形的組成

      點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。

      線:面和面相交的地方是線,分為直線和曲線。

      面:包圍著體的是面,分為平面和曲面。

      體:幾何體也簡稱體。

      (2)點(diǎn)動成線,線動成面,面動成體。

      3、生活中的立體圖形

      生活中的立體圖形

      柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

      正有理數(shù) 整數(shù)

      有理數(shù) 零 有理數(shù)

      負(fù)有理數(shù) 分?jǐn)?shù)

      2、相反數(shù):只有符號不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零

      3、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時(shí),三要素缺一不可)。任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

      4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

      5、絕對值:在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

      正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。互為相反數(shù)的兩個(gè)數(shù)的絕對值相等。

      6、有理數(shù)比較大小:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個(gè)負(fù)數(shù),絕對值大的反而小。

      7、有理數(shù)的運(yùn)算:

      (1)五種運(yùn)算:加、減、乘、除、乘方

      多個(gè)數(shù)相乘,積的符號由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號為正。只要有一個(gè)數(shù)為零,積就為零。

      有理數(shù)加法法則:

      同號兩數(shù)相加,取相同的符號,并把絕對值相加。

      異號兩數(shù)相加,絕對值值相等時(shí)和為0;絕對值不相等時(shí),取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

      一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

      互為相反數(shù)的兩個(gè)數(shù)相加和為0。

      有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)!

      有理數(shù)乘法法則:

      兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

      任何數(shù)與0相乘,積仍為0。

      有理數(shù)除法法則:

      兩個(gè)有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。

      0除以任何非0的數(shù)都得0。

      注意:0不能作除數(shù)。

      有理數(shù)的乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方。

      正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。

      (2)有理數(shù)的運(yùn)算順序

      先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

      (3)運(yùn)算律

      加法交換律 加法結(jié)合律

      乘法交換律 乘法結(jié)合律

      乘法對加法的分配律

      8、科學(xué)記數(shù)法

      一般地,一個(gè)大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)-1)

      第三章 整式及其加減

      1、代數(shù)式

      用運(yùn)算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。

      注意:①代數(shù)式中除了含有數(shù)、字母和運(yùn)算符號外,還可以有括號;

      ②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

      ③代數(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。

      ※代數(shù)式的書寫格式:

      ①代數(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

      ②數(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫在字母前面,如4a;

      ③帶分?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作;

      ④數(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

      ⑤在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般寫成分?jǐn)?shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。

      ⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。

      2、整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

      ①單項(xiàng)式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項(xiàng)式。單項(xiàng)式中,所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù);數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。

      注意:1.單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式;2.單獨(dú)一個(gè)非零數(shù)的次數(shù)是0;3.當(dāng)單項(xiàng)式的系數(shù)為1或-1時(shí),這個(gè)“1”應(yīng)省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。

      ②多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng);次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù)。

      3、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。

      注意:①同類項(xiàng)有兩個(gè)條件:a.所含字母相同;b.相同字母的指數(shù)也相同。

      ②同類項(xiàng)與系數(shù)無關(guān),與字母的排列順序無關(guān);

      ③幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng)。

      4、合并同類項(xiàng)法則:把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

      5、去括號法則

      ①根據(jù)去括號法則去括號:

      括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項(xiàng)都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項(xiàng)都改變符號。

      ②根據(jù)分配律去括號:

      括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項(xiàng)以達(dá)到去括號的目的。

      6、添括號法則

      添“+”號和括號,添到括號里的各項(xiàng)符號都不改變;添“-”號和括號,添到括號里的各項(xiàng)符號都要改變。

      7、整式的運(yùn)算:

      整式的加減法:(1)去括號;(2)合并同類項(xiàng)。

      第四章 基本平面圖形

      2、直線的性質(zhì)

      (1)直線公理:經(jīng)過兩個(gè)點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。)

      (2)過一點(diǎn)的直線有無數(shù)條。

      (3)直線是是向兩方面無限延伸的',無端點(diǎn),不可度量,不能比較大小。

      3、線段的性質(zhì)

      (1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。)

      (2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。

      (3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

      4、線段的中點(diǎn):

      點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。

      5、角:

      有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線叫做這個(gè)角的邊。或:角也可以看成是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。

      6、角的表示

      角的表示方法有以下四種:

      ①用數(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。

      ②用小寫的希臘字母表示單獨(dú)的一個(gè)角,如∠α,∠β,∠γ,∠θ等。

      ③用一個(gè)大寫英文字母表示一個(gè)獨(dú)立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。

      ④用三個(gè)大寫英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。

      注意:用三個(gè)大寫字母表示角時(shí),一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。

      7、角的度量

      角的度量有如下規(guī)定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

      把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

      把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

      1°=60’,1’=60”

      8、角的平分線

      從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

      9、角的性質(zhì)

      (1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

      (2)角的大小可以度量,可以比較,角可以參與運(yùn)算。

      10、平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時(shí),所形成的角叫做周角。

      11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線段叫做多邊形的對角線。

      從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(n-3)條對角線,把這個(gè)n邊形分割成(n-2)個(gè)三角形。

      12、圓:平面上,一條線段繞著一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

      圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。

      第五章 一元一次方程

      1、方程

      含有未知數(shù)的等式叫做方程。

      2、方程的解

      能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

      3、等式的性質(zhì)

      (1)等式的兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式。

      (2)等式的兩邊同時(shí)乘以同一個(gè)數(shù)((或除以同一個(gè)不為0的數(shù)),所得結(jié)果仍是等式。

      4、一元一次方程

      只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

      5、移項(xiàng):把方程中的某一項(xiàng),改變符號后,從方程的一邊移到另一邊,這種變形叫做移項(xiàng).

      6、解一元一次方程的一般步驟:

      (1)去分母(2)去括號(3)移項(xiàng)(把方程中的某一項(xiàng)改變符號后,從方程的一邊移到另一邊,這種變形叫移項(xiàng)。)(4)合并同類項(xiàng)(5)將未知數(shù)的系數(shù)化為1

      第六章 數(shù)據(jù)的收集與整理

      1、普查與抽樣調(diào)查

      為了特定目的對全部考察對象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個(gè)被考察對象稱為個(gè)體。

      從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個(gè)體叫做總體的一個(gè)樣本。

      2、扇形統(tǒng)計(jì)圖

      扇形統(tǒng)計(jì)圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖。(各個(gè)扇形所占的百分比之和為1)

      圓心角度數(shù)=360°×該項(xiàng)所占的百分比。(各個(gè)部分的圓心角度數(shù)之和為360°)

      3、頻數(shù)直方圖

      頻數(shù)直方圖是一種特殊的條形統(tǒng)計(jì)圖,它將統(tǒng)計(jì)對象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

      4、各種統(tǒng)計(jì)圖的特點(diǎn)

      條形統(tǒng)計(jì)圖:能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目。

      折線統(tǒng)計(jì)圖:能清楚地反映事物的變化情況。

      扇形統(tǒng)計(jì)圖:能清楚地表示出各部分在總體中所占的百分比。

    初中數(shù)學(xué)知識點(diǎn)總結(jié)14

      1.常量和變量

      在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

      2.函數(shù)

      設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對于x在某一范圍的每一個(gè)值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù).

      3.自變量的取值范圍

      (1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.

      (3)偶次方根:被開方數(shù)為非負(fù)數(shù).

      (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

      4.函數(shù)值

      對于自變量在取值范圍內(nèi)的一個(gè)確定的值,如當(dāng)x=a時(shí),函數(shù)有唯一確定的對應(yīng)值,這個(gè)對應(yīng)值,叫做x=a時(shí)的函數(shù)值.

      5.函數(shù)的表示法

      (1)解析法;(2)列表法;(3)圖象法.

      6.函數(shù)的圖象

      把自變量x的一個(gè)值和函數(shù)y的對應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:

      (1)寫出函數(shù)解析式及自變量的取值范圍;

      (2)列表:列表給出自變量與函數(shù)的一些對應(yīng)值;

      (3)描點(diǎn):以表中對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);

      (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來.

      7.一次函數(shù)

      (1)一次函數(shù)

      如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

      特別地,當(dāng)b=0時(shí),一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時(shí),y叫做x的正比例函數(shù).

      (2)一次函數(shù)的圖象

      一次函數(shù)y=kx+b的圖象是一條經(jīng)過(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過原點(diǎn)的直線.需要說明的是,在平面直角坐標(biāo)系中,“直線”并不等價(jià)于“一次函數(shù)y=kx+b(k≠0)的圖象”,因?yàn)檫有直線y=m(此時(shí)k=0)和直線x=n(此時(shí)k不存在),它們不是一次函數(shù)圖象.

      (3)一次函數(shù)的性質(zhì)

      當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.

      (4)用函數(shù)觀點(diǎn)看方程(組)與不等式

      ①任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時(shí),求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).

      ②二元一次方程組對應(yīng)兩個(gè)一次函數(shù),于是也對應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)值相等,以及這兩個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的坐標(biāo).

      ③任何一元一次不等式都可以轉(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時(shí),求自變量相應(yīng)的取值范圍.

      8.反比例函數(shù)(1)反比例函數(shù)

      (1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

      (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

      (3)反比例函數(shù)的性質(zhì)

      ①當(dāng)k>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減小.

      ②當(dāng)k<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

      ③反比例函數(shù)圖象關(guān)于直線y=±x對稱,關(guān)于原點(diǎn)對稱.

      (4)k的兩種求法

      ①若點(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

      若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

      (5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問題

      若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時(shí),兩函數(shù)圖象無交點(diǎn);

      當(dāng)k1k2>0時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對稱.

      1.二次函數(shù)

      如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

      幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

      2.二次函數(shù)的圖象

      二次函數(shù)y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

      3.二次函數(shù)的性質(zhì)

      二次函數(shù)y=ax2+bx+c的性質(zhì)對應(yīng)在它的圖象上,有如下性質(zhì):

      (1)拋物線y=ax2+bx+c的`頂點(diǎn)是,對稱軸是直線,頂點(diǎn)必在對稱軸上;

      (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時(shí),y隨x的增大而減小;當(dāng)x>時(shí),y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減小;當(dāng)x=時(shí),y有最大值;

      (3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

      (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:

      <0時(shí),拋物線y=ax2+bx+c與x軸沒有公共點(diǎn).=0時(shí),拋物線y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移

      拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.

    初中數(shù)學(xué)知識點(diǎn)總結(jié)15

      定義

      對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

      比值與比的概念

      比值是一個(gè)具體的數(shù)字如:AB/EF=2

      而比不是一個(gè)具體的數(shù)字如:AB/EF=2:1判定方法

      證兩個(gè)相似三角形應(yīng)該把表示對應(yīng)頂點(diǎn)的字母寫在對應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個(gè)三角形的對應(yīng)頂點(diǎn)可能沒有寫在對應(yīng)的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個(gè)三角形的對應(yīng)頂點(diǎn)寫在了對應(yīng)的位置上。

      方法一(預(yù)備定理)

      平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線與線段成比例的'證明)

      方法二

      如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似。

      方法三

      如果兩個(gè)三角形的兩組對應(yīng)邊成比例,并且相應(yīng)的夾角相等,

      那么這兩個(gè)三角形相似

      方法四

      如果兩個(gè)三角形的三組對應(yīng)邊成比例,那么這兩個(gè)三角形相似

      方法五(定義)

      對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

      三個(gè)基本型

      Z型A型反A型

      方法六

      兩個(gè)直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。一定相似的三角形

      1、兩個(gè)全等的三角形

      (全等三角形是特殊的相似三角形,相似比為1:1)

      2、兩個(gè)等腰三角形

      (兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)

      3、兩個(gè)等邊三角形

      (兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)

      4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)

      圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。

    【初中數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

    初中數(shù)學(xué)的知識點(diǎn)總結(jié)09-19

    初中數(shù)學(xué)的知識點(diǎn)總結(jié)03-11

    初中數(shù)學(xué)知識點(diǎn)總結(jié)05-30

    初中數(shù)學(xué)知識點(diǎn)總結(jié)10-24

    初中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)04-08

    初中數(shù)學(xué)必考知識點(diǎn)總結(jié)02-22

    初中數(shù)學(xué)代數(shù)知識點(diǎn)總結(jié)03-06

    初中數(shù)學(xué)知識點(diǎn)總結(jié)06-24

    初中數(shù)學(xué)的知識點(diǎn)總結(jié)大全12-09

    初中數(shù)學(xué)知識點(diǎn)總結(jié)03-07

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      亚洲国产欧美另类综合 | 亚洲另类日本欧美专区 | 色窝窝在线视频免费观看 | 少妇把腿扒开我添69式 | 亚洲国产欧美精品一区二区 | 亚洲欧美精品中文三区 |