數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理

    時(shí)間:2022-09-01 12:43:05 總結(jié) 我要投稿

    數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理

      總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書(shū)面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,因此好好準(zhǔn)備一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編收集整理的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理,希望對(duì)大家有所幫助。

    數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理1

      1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

      2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

      方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn)。

      3、函數(shù)零點(diǎn)的求法:

      求函數(shù)的零點(diǎn):

      (1)(代數(shù)法)求方程的實(shí)數(shù)根;

      (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。

      4、二次函數(shù)的零點(diǎn):

      二次函數(shù)。

      1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。

      2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

      3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理2

      1、用加、減、乘(乘方)、除等運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連接而成的式子,叫做代數(shù)式。(注:?jiǎn)为?dú)一個(gè)數(shù)字或字母也是代數(shù)式)

      2、代數(shù)式的寫(xiě)法:數(shù)學(xué)與字母相乘時(shí),“×”號(hào)省略,數(shù)字寫(xiě)在字母前;字母與字母相乘時(shí),相同字母寫(xiě)成冪的形式;數(shù)字與數(shù)字相乘時(shí),“×”號(hào)不能省略;式中出現(xiàn)除法時(shí),一般寫(xiě)成分?jǐn)?shù)形式。式中出現(xiàn)帶分?jǐn)?shù)時(shí),一般寫(xiě)成假分?jǐn)?shù)形式。

      3、分段問(wèn)題書(shū)寫(xiě)代數(shù)式時(shí)要分段考慮,有單位時(shí)要考慮是否要();如:電費(fèi)、水費(fèi)、出租車、商店優(yōu)惠。

      4、單項(xiàng)式:由數(shù)字和字母乘積組成的式子。單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。因此,判斷代數(shù)式是否是單項(xiàng)式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,若①分母中不含有字母,②式子中含有加、減運(yùn)算關(guān)系,也不是單項(xiàng)式。

      單項(xiàng)式的系數(shù):是指單項(xiàng)式中的數(shù)字因數(shù);(不要漏負(fù)號(hào)和分母)

      單項(xiàng)數(shù)的次數(shù):是指單項(xiàng)式中所有字母的指數(shù)的和。(注意指數(shù)1)

      5、多項(xiàng)式:幾個(gè)單項(xiàng)式的和。判斷代數(shù)式是否是多項(xiàng)式,關(guān)鍵要看代數(shù)式中的每一項(xiàng)是否是單項(xiàng)式。每個(gè)單項(xiàng)式稱項(xiàng),(其中不含字母的項(xiàng)叫常數(shù)項(xiàng))多項(xiàng)式的次數(shù)是指多項(xiàng)式里次數(shù)最高項(xiàng)的次數(shù)(選代表);多項(xiàng)式的項(xiàng)是指在多項(xiàng)式中每一個(gè)單項(xiàng)式。特別注意多項(xiàng)式的項(xiàng)包括它前面的性質(zhì)符號(hào)。它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項(xiàng)式和多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào)。

      6、代數(shù)式分為整式和分式(分母里含有字母);整式分為單項(xiàng)式和多項(xiàng)式。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理3

      (1)不等關(guān)系

      感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。

      (2)一元二次不等式

      ①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過(guò)程。

      ②通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。

      ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。

      (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題

      ①?gòu)膶?shí)際情境中抽象出二元一次不等式組。

      ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見(jiàn)例2)。

      ③從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決(參見(jiàn)例3)。

      (4)基本不等式:

      ①探索并了解基本不等式的證明過(guò)程。

      ②會(huì)用基本不等式解決簡(jiǎn)單的(小)值問(wèn)題。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理4

      (一)本單元知識(shí)網(wǎng)絡(luò):

      1、生活中的數(shù)

      (1)認(rèn)、讀、數(shù)、寫(xiě)10以內(nèi)的數(shù)。

      (2)掌握10以內(nèi)數(shù)的順序和大小,初步體會(huì)基數(shù)與序數(shù)的含義。

      (二)各課知識(shí)點(diǎn):

      1、可愛(ài)的校園(數(shù)數(shù))

      知識(shí)點(diǎn):

      (1)通過(guò)觀察情境圖,初步認(rèn)識(shí)10以內(nèi)的數(shù)。

      (2)在數(shù)數(shù)的活動(dòng)中,體會(huì)有序數(shù)數(shù)的方法。

      2、快樂(lè)的家園(10以內(nèi)數(shù)的認(rèn)識(shí))

      知識(shí)點(diǎn):

      (1)初步認(rèn)識(shí)1~10各數(shù)的符號(hào)表示方法。

      (2)在具體情境活動(dòng)中,學(xué)習(xí)運(yùn)用數(shù)字符號(hào)表示日常生活中的一些物體的量。

      3、玩具(1~5的認(rèn)識(shí)與書(shū)寫(xiě))

      知識(shí)點(diǎn):

      能正確數(shù)出5以內(nèi)物體的個(gè)數(shù),能用數(shù)表示日常生活的一些事物,會(huì)正確書(shū)寫(xiě)1~5的數(shù)字。

      4、小貓釣魚(yú)(0的認(rèn)識(shí))

      知識(shí)點(diǎn):

      (1)知道在生活中“0”所表示的幾種常見(jiàn)的意義,知道“0”和1,2,3,…一樣也是一個(gè)數(shù),“0”比1,2,3,…小。

      (2)會(huì)正確書(shū)寫(xiě)“0”

      5、文具(6~10的認(rèn)識(shí)與書(shū)寫(xiě))

      知識(shí)點(diǎn):

      (1)能夠正確地?cái)?shù)出數(shù)量是6~10的物體個(gè)數(shù)。

      (2)學(xué)會(huì)6~10各數(shù)的讀寫(xiě)方法。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理5

      函數(shù)

      ①位置的確定與平面直角坐標(biāo)系

      位置的確定

      坐標(biāo)變換

      平面直角坐標(biāo)系內(nèi)點(diǎn)的特征

      平面直角坐標(biāo)系內(nèi)點(diǎn)坐標(biāo)的符號(hào)與點(diǎn)的象限位置

      對(duì)稱問(wèn)題:P(x,y)→Q(x,- y)關(guān)于x軸對(duì)稱P(x,y)→Q(- x,y)關(guān)于y軸對(duì)稱P(x,y)→Q(- x,-y)關(guān)于原點(diǎn)對(duì)稱

      變量、自變量、因變量、函數(shù)的定義

      函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數(shù)的圖象:變量的變化趨勢(shì)描述

      ②一次函數(shù)與正比例函數(shù)

      一次函數(shù)的定義與正比例函數(shù)的定義

      一次函數(shù)的圖象:直線,畫(huà)法

      一次函數(shù)的性質(zhì)(增減性)

      一次函數(shù)y=kx+b(k≠0)中k、b符號(hào)與圖象位置

      待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)

      一次函數(shù)的平移問(wèn)題

      一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)

      一次函數(shù)的`實(shí)際應(yīng)用

      一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理6

      圓的定理:

      1不在同一直線上的三點(diǎn)確定一個(gè)圓。

      2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

      推論1

      ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

      ②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

      ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

      推論2

      圓的兩條平行弦所夾的弧相等

      3圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

      4圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

      5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

      6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

      7同圓或等圓的半徑相等

      8到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

      9定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

      10推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

      中考數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)口訣

      有理數(shù)的加法運(yùn)算

      同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,

      符號(hào)跟著大的跑;絕對(duì)值相等“零”正好。

      合并同類項(xiàng)

      合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。

      去、添括號(hào)法則

      去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),

      括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),

      括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。

      一元一次方程

      已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。

      平方差公式

      平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

      完全平方公式

      完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;

      首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。

      因式分解

      一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,

      兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,

      四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),

      就用一三來(lái)分組,否則二二去分組,

      五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,

      以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。

      單項(xiàng)式運(yùn)算

      加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清,

      系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。

      一元一次不等式解題步驟

      去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)合并好,再把系數(shù)來(lái)除掉,

      兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。

      一元一次不等式組的解集

      大大取較大,小小取較小,小大、大小取中間,大小、小大無(wú)處找。

      一元二次不等式、一元一次絕對(duì)值不等式的解集

      大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。

      分式混合運(yùn)算法則

      分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);

      乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;

      加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;

      變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。

      中考數(shù)學(xué)知識(shí)點(diǎn)歸納:平面直角坐標(biāo)系

      平面直角坐標(biāo)系

      1、平面直角坐標(biāo)系

      在平面內(nèi)畫(huà)兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。

      其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

      為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

      注意:x軸和y軸上的點(diǎn),不屬于任何象限。

      2、點(diǎn)的坐標(biāo)的概念

      點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理7

      平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

      水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

      平面直角坐標(biāo)系的要素:

      ①在同一平面

      ②兩條數(shù)軸

      ③互相垂直

      ④原點(diǎn)重合

      三個(gè)規(guī)定:

      ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

      ②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

      ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

      相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

      初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

      對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。

      平面直角坐標(biāo)系的構(gòu)成

      在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理8

      1.知識(shí)網(wǎng)絡(luò)圖

      復(fù)數(shù)知識(shí)點(diǎn)網(wǎng)絡(luò)圖

      2.復(fù)數(shù)中的難點(diǎn)

      (1)復(fù)數(shù)的向量表示法的運(yùn)算。對(duì)于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對(duì)向量的運(yùn)算的幾何意義的靈活掌握有一定的困難。對(duì)此應(yīng)認(rèn)真體會(huì)復(fù)數(shù)向量運(yùn)算的幾何意義,對(duì)其靈活地加以證明。

      (2)復(fù)數(shù)三角形式的乘方和開(kāi)方。有部分學(xué)生對(duì)運(yùn)算法則知道,但對(duì)其靈活地運(yùn)用有一定的困難,特別是開(kāi)方運(yùn)算,應(yīng)對(duì)此認(rèn)真地加以訓(xùn)練。

      (3)復(fù)數(shù)的輻角主值的求法。

      (4)利用復(fù)數(shù)的幾何意義靈活地解決問(wèn)題。復(fù)數(shù)可以用向量表示,同時(shí)復(fù)數(shù)的模和輻角都具有幾何意義,對(duì)他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會(huì)。

      3.復(fù)數(shù)中的重點(diǎn)

      (1)理解好復(fù)數(shù)的概念,弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)的不同點(diǎn)。

      (2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角。復(fù)數(shù)有代數(shù),向量和三角三種表示法。特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問(wèn)題時(shí)經(jīng)常用到,是一個(gè)重點(diǎn)內(nèi)容。

      (3)復(fù)數(shù)的三種表示法的各種運(yùn)算,在運(yùn)算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì)。復(fù)數(shù)的運(yùn)算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運(yùn)算,特別是復(fù)數(shù)運(yùn)算的幾何意義更是重點(diǎn)內(nèi)容。

      (4)復(fù)數(shù)集中一元二次方程和二項(xiàng)方程的解法。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理9

      數(shù)軸

      ⒈.數(shù)軸的概念

      規(guī)定了原點(diǎn),正方向,單位長(zhǎng)度的直線叫做數(shù)軸。

      注意:

      ⑴數(shù)軸是一條向兩端無(wú)限延伸的直線;

      ⑵原點(diǎn)、正方向、單位長(zhǎng)度是數(shù)軸的三要素,三者缺一不可;

      ⑶同一數(shù)軸上的單位長(zhǎng)度要統(tǒng)一;

      ⑷數(shù)軸的三要素都是根據(jù)實(shí)際需要規(guī)定的。

      2.數(shù)軸上的點(diǎn)與有理數(shù)的關(guān)系

      ⑴所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,0用原點(diǎn)表示。

      ⑵所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示出來(lái),但數(shù)軸上的點(diǎn)不都表示有理數(shù),也就是說(shuō),有理數(shù)與數(shù)軸上的點(diǎn)不是一一對(duì)應(yīng)關(guān)系。(如,數(shù)軸上的點(diǎn)π不是有理數(shù))

      3.利用數(shù)軸表示兩數(shù)大小

      ⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;

      ⑵正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);

      ⑶兩個(gè)負(fù)數(shù)比較,距離原點(diǎn)遠(yuǎn)的數(shù)比距離原點(diǎn)近的數(shù)小。

      4.數(shù)軸上特殊的(小)數(shù)

      ⑴最小的自然數(shù)是0,無(wú)的自然數(shù);

      ⑵最小的正整數(shù)是1,無(wú)的正整數(shù);

      ⑶的負(fù)整數(shù)是-1,無(wú)最小的負(fù)整數(shù)

      5.a可以表示什么數(shù)

      ⑴a>0表示a是正數(shù);反之,a是正數(shù),則a>0;

      ⑵a<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0

      ⑶a=0表示a是0;反之,a是0,,則a=0

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理10

      一、同余的定義:

      ①若兩個(gè)整數(shù)a、b除以的余數(shù)相同,則稱a、b對(duì)于模同余。

      ②已知三個(gè)整數(shù)a、b、,如果|a-b,就稱a、b對(duì)于模同余,記作a≡b(d ),讀作a同余于b模。

      二、同余的性質(zhì):

      ①自身性:a≡a(d );

      ②對(duì)稱性:若a≡b(d ),則b≡a(d );

      ③傳遞性:若a≡b(d ),b≡c(d ),則a≡ c(d );

      ④和差性:若a≡b(d ),c≡d(d ),則a+c≡b+d(d ),a-c≡b-d(d );

      ⑤相乘性:若a≡ b(d ),c≡d(d ),則a×c≡ b×d(d );

      ⑥乘方性:若a≡b(d ),則an≡bn(d );

      ⑦同倍性:若a≡ b(d ),整數(shù)c,則a×c≡ b×c(d ×c);

      三、關(guān)于乘方的預(yù)備知識(shí):

      ①若A=a×b,則MA=Ma×b=(Ma)b

      ②若B=c+d則MB=Mc+d=Mc×Md

      四、被3、9、11除后的余數(shù)特征:

      ①一個(gè)自然數(shù)M,n表示M的各個(gè)數(shù)位上數(shù)字的和,則M≡n(d 9)或(d 3);

      ②一個(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則M≡-X或M≡11-(X-)(d 11);

      五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(d p)。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理11

      1、變量與常量

      在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

      一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。

      2、函數(shù)解析式

      用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

      使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

      3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

      (1)解析法

      兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

      (2)列表法

      把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。

      (3)圖像法

      用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

      4、由函數(shù)解析式畫(huà)其圖像的一般步驟

      (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。

      (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。

      (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理12

      第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。

      第二章:數(shù)列。考試必考。等差等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和及一些性質(zhì)。這一章屬于學(xué)起來(lái)很容易,但做題卻不會(huì)做的類型。考試題中,一般都是要求通項(xiàng)公式、前n項(xiàng)和,所以拿到題目之后要帶有目的的去推導(dǎo)。

      第三章:不等式。這一章一般用線性規(guī)劃的形式來(lái)考察。這種題一般是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫(huà)出線性規(guī)劃圖。然后再根據(jù)實(shí)際問(wèn)題的限制要求求最值。

      選修中的簡(jiǎn)單邏輯用語(yǔ)、圓錐曲線和導(dǎo)數(shù):邏輯用語(yǔ)只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的區(qū)別,考試一般會(huì)用選擇題考這一知識(shí)點(diǎn),難度不大;圓錐曲線一般作為考試的壓軸題出現(xiàn)。而且有多問(wèn),一般第一問(wèn)較簡(jiǎn)單,是求曲線方程,只要記住圓錐曲線的表達(dá)式難度就不大。后面兩到三問(wèn)難打一般會(huì)很大,而且較費(fèi)時(shí)間。所以不建議做。

      這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導(dǎo)數(shù),導(dǎo)數(shù)公式、運(yùn)算法則、用導(dǎo)數(shù)求極值和最值的方法。一般會(huì)考察用導(dǎo)數(shù)求最值,會(huì)用導(dǎo)數(shù)公式就難度不大。

      數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理13

      一、求導(dǎo)數(shù)的方法

      (1)基本求導(dǎo)公式

      (2)導(dǎo)數(shù)的四則運(yùn)算

      (3)復(fù)合函數(shù)的導(dǎo)數(shù)

      設(shè)在點(diǎn)x處可導(dǎo),y=在點(diǎn)處可導(dǎo),則復(fù)合函數(shù)在點(diǎn)x處可導(dǎo),且即

      二、關(guān)于極限

      1、數(shù)列的極限:

      粗略地說(shuō),就是當(dāng)數(shù)列的項(xiàng)n無(wú)限增大時(shí),數(shù)列的項(xiàng)無(wú)限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

      2、函數(shù)的極限:

      當(dāng)自變量x無(wú)限趨近于常數(shù)時(shí),如果函數(shù)無(wú)限趨近于一個(gè)常數(shù),就說(shuō)當(dāng)x趨近于時(shí),函數(shù)的極限是,記作

      三、導(dǎo)數(shù)的概念

      1、在處的導(dǎo)數(shù)。

      2、在的導(dǎo)數(shù)。

      3、函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義:

      函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,

      即k=,相應(yīng)的切線方程是

      注:函數(shù)的導(dǎo)函數(shù)在時(shí)的函數(shù)值,就是在處的導(dǎo)數(shù)。

      例、若=2,則=()A—1B—2C1D

      四、導(dǎo)數(shù)的綜合運(yùn)用

      (一)曲線的切線

      函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),就是曲線y=(x)在點(diǎn)處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:

      (1)求出函數(shù)y=f(x)在點(diǎn)處的導(dǎo)數(shù),即曲線y=f(x)在點(diǎn)處的切線的斜率k=

      (2)在已知切點(diǎn)坐標(biāo)和切線斜率的條件下,求得切線方程為x。

    【數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理】相關(guān)文章:

    中考知識(shí)點(diǎn)總結(jié)數(shù)學(xué)整理01-26

    高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)整理01-24

    小學(xué)數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)整理03-01

    高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)整理12-23

    高考數(shù)學(xué)遺漏知識(shí)點(diǎn)整理02-22

    高考數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)整理02-17

    高二數(shù)學(xué)的知識(shí)點(diǎn)整理02-24

    初中下數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版整理12-26

    高考數(shù)學(xué)知識(shí)點(diǎn)公式整理02-17

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      免费观看国产v片在线 | 日本日本乱码伦视频网站 | 婷婷久久五月综合色国产 | 在线看黄Ⅴ免费网站免费看 | 依依成人精品视频在线观看 | 色婷婷在线观看中文字幕 |