數學初中全部知識點總結

    時間:2025-03-06 09:40:57 知識點總結 我要投稿

    數學初中全部知識點總結

      在我們平凡的學生生涯里,相信大家一定都接觸過知識點吧!知識點是知識中的最小單位,最具體的內容,有時候也叫“考點”。那么,都有哪些知識點呢?以下是小編幫大家整理的數學初中全部知識點總結,希望對大家有所幫助。

    數學初中全部知識點總結

      數學初中全部知識點總結1

      1、正數和負數的有關概念

      (1)正數:比0大的數叫做正數;

      負數:比0小的數叫做負數;

      0既不是正數,也不是負數。

      (2)正數和負數表示相反意義的量。

      2、有理數的概念及分類

      3、有關數軸

      (1)數軸的三要素:原點、正方向、單位長度。數軸是一條直線。

      (2)所有有理數都可以用數軸上的點來表示,但數軸上的點不一定都是有理數。

      (3)數軸上,右邊的數總比左邊的數大;表示正數的點在原點的右側,表示負數的點在原點的左側。

      (2)相反數:符號不同、絕對值相等的兩個數互為相反數。

      若a、b互為相反數,則a+b=0;

      相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。

      (3)絕對值最小的數是0;絕對值是本身的數是非負數。

      4、任何數的絕對值是非負數。

      最小的正整數是1,最大的負整數是-1。

      5、利用絕對值比較大小

      兩個正數比較:絕對值大的那個數大;

      兩個負數比較:先算出它們的絕對值,絕對值大的反而小。

      6、有理數加法

      (1)符號相同的兩數相加:和的符號與兩個加數的符號一致,和的'絕對值等于兩個加數絕對值之和.

      (2)符號相反的兩數相加:當兩個加數絕對值不等時,和的符號與絕對值較大的加數的符號相同,和的絕對值等于加數中較大的絕對值減去較小的絕對值;當兩個加數絕對值相等時,兩個加數互為相反數,和為零.

      (3)一個數同零相加,仍得這個數.

      加法的交換律:a+b=b+a

      加法的結合律:(a+b)+c=a+(b+c)

      7、有理數減法:減去一個數,等于加上這個數的相反數。

      8、在把有理數加減混合運算統一為最簡的形式,負數前面的加號可以省略不寫.

      例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

      9、有理數的乘法

      兩個數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。

      第一步:確定積的符號 第二步:絕對值相乘

      10、乘積的符號的確定

      幾個有理數相乘,因數都不為 0 時,積的符號由負因數的個數確定:當負因數有奇數個時,積為負;

      當負因數有偶數個時,積為正。幾個有理數相乘,有一個因數為零,積就為零。

      11、倒數:乘積為1的兩個數互為倒數,0沒有倒數。

      正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個數符號一定相同)

      倒數是本身的只有1和-1。

      數學初中全部知識點總結2

      三角形的知識點

      1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

      2、三角形的分類

      3、三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

      4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

      5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

      6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

      7、高線、中線、角平分線的意義和做法

      8、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

      9、三角形內角和定理:三角形三個內角的和等于180°

      推論1直角三角形的兩個銳角互余

      推論2三角形的一個外角等于和它不相鄰的兩個內角和

      推論3三角形的一個外角大于任何一個和它不相鄰的內角;三角形的內角和是外角和的一半

      10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

      11、三角形外角的性質

      (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

      (2)三角形的一個外角等于與它不相鄰的兩個內角和;

      (3)三角形的一個外角大于與它不相鄰的任一內角;

      (4)三角形的外角和是360°。

      四邊形(含多邊形)知識點、概念總結

      一、平行四邊形的定義、性質及判定

      1、兩組對邊平行的四邊形是平行四邊形。

      2、性質:

      (1)平行四邊形的對邊相等且平行

      (2)平行四邊形的對角相等,鄰角互補

      (3)平行四邊形的對角線互相平分

      3、判定:

      (1)兩組對邊分別平行的四邊形是平行四邊形

      (2)兩組對邊分別相等的四邊形是平行四邊形

      (3)一組對邊平行且相等的四邊形是平行四邊形

      (4)兩組對角分別相等的四邊形是平行四邊形

      (5)對角線互相平分的四邊形是平行四邊形

      4、對稱性:平行四邊形是中心對稱圖形

      二、矩形的定義、性質及判定

      1、定義:有一個角是直角的平行四邊形叫做矩形

      2、性質:矩形的四個角都是直角,矩形的對角線相等

      3、判定:

      (1)有一個角是直角的平行四邊形叫做矩形

      (2)有三個角是直角的四邊形是矩形

      (3)兩條對角線相等的平行四邊形是矩形

      4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

      三、菱形的定義、性質及判定

      1、定義:有一組鄰邊相等的平行四邊形叫做菱形

      (1)菱形的四條邊都相等

      (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

      (3)菱形被兩條對角線分成四個全等的直角三角形

      (4)菱形的面積等于兩條對角線長的積的一半

      2、s菱=爭6(n、6分別為對角線長)

      3、判定:

      (1)有一組鄰邊相等的平行四邊形叫做菱形

      (2)四條邊都相等的四邊形是菱形

      (3)對角線互相垂直的平行四邊形是菱形

      4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

      四、正方形定義、性質及判定

      1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

      2、性質:

      (1)正方形四個角都是直角,四條邊都相等

      (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

      (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

      (4)正方形的對角線與邊的夾角是45°

      (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

      3、判定:

      (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

      (2)先判定一個四邊形是菱形,再判定出有一個角是直角

      4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

      五、梯形的定義、等腰梯形的性質及判定

      1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

      2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

      3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

      4、對稱性:等腰梯形是軸對稱圖形

      六、三角形的中位線平行于三角形的第三邊并等于第三邊的.一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

      七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

      八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

      九、多邊形

      1、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

      2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

      3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

      4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

      5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

      6、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

      7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

      8、公式與性質

      多邊形內角和公式:n邊形的內角和等于(n-2)·180°

      9、多邊形外角和定理:

      (1)n邊形外角和等于n·180°-(n-2)·180°=360°

      (2)邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°

      10、多邊形對角線的條數:

      (1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

      (2)n邊形共有n(n-3)/2條對角線

      圓知識點、概念總結

      1、不在同一直線上的三點確定一個圓。

      2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

      ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

     、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      推論2圓的兩條平行弦所夾的弧相等

      3、圓是以圓心為對稱中心的中心對稱圖形

      4、圓是定點的距離等于定長的點的集合

      5、圓的內部可以看作是圓心的距離小于半徑的點的集合

      6、圓的外部可以看作是圓心的距離大于半徑的點的集合

      7、同圓或等圓的半徑相等

      8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

      9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

      11、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

      12、①直線L和⊙O相交d

     、谥本L和⊙O相切d=r

     、壑本L和⊙O相離d>r

      13、切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線

      14、切線的性質定理:圓的切線垂直于經過切點的半徑

      15、推論1經過圓心且垂直于切線的直線必經過切點

      16、推論2經過切點且垂直于切線的直線必經過圓心

      17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

      18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

      19、如果兩個圓相切,那么切點一定在連心線上

      20、①兩圓外離d>R+r

      ②兩圓外切d=R+r

     、蹆蓤A相交R-rr)

     、軆蓤A內切d=R-r(R>r)⑤兩圓內含dr)

      21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

      22、定理:把圓分成n(n≥3):

      (1)依次連結各分點所得的多邊形是這個圓的內接正n邊形

      (2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

      23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

      24、正n邊形的每個內角都等于(n-2)×180°/n

      25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

      26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

      27、正三角形面積√3a/4a表示邊長

      28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

      29、弧長計算公式:L=n兀R/180

      30、扇形面積公式:S扇形=n兀R^2/360=LR/2

      31、內公切線長=d-(R-r)外公切線長=d-(R+r)

      32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

      33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

      34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      35、弧長公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r

      數學初中全部知識點總結3

      1、有理數:

     、僬麛怠麛/0/負整數

     、诜謹怠謹/負分數

      數軸:

     、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。

     、谌魏我粋有理數都可以用數軸上的一個點來表示。

     、廴绻麅蓚數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。

     、軘递S上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

      絕對值:

      ①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

     、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

      有理數的運算:加法:

      ①同號相加,取相同的符號,把絕對值相加。

     、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

     、垡粋數與0相加不變。

      減法:減去一個數,等于加上這個數的相反數。

      乘法:

      ①兩數相乘,同號得正,異號得負,絕對值相乘。

     、谌魏螖蹬c0相乘得0。

     、鄢朔e為1的兩個有理數互為倒數。

      除法:

     、俪砸粋數等于乘以一個數的倒數。

      ②0不能作除數。

      乘方:求n個相同因數a的積的運算叫做乘方,乘方的.結果叫冪,a叫底數,n叫次數。

      混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

      2、實數 無理數:無限不循環小數叫無理數

      平方根:

     、偃绻粋正數x的平方等于a,那么這個正數x就叫做a的算術平方根。

     、谌绻粋數x的平方等于a,那么這個數x就叫做a的平方根。

     、垡粋正數有2個平方根/0的平方根為0/負數沒有平方根。

     、芮笠粋數a的平方根運算,叫做開平方,其中a叫做被開方數。

      立方根:

     、偃绻粋數x的立方等于a,那么這個數x就叫做a的立方根。

     、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。

      ③求一個數a的立方根的運算叫開立方,其中a叫做被開方數。

      實數:

     、賹崝捣钟欣頂岛蜔o理數。

     、谠趯崝捣秶鷥,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

     、勖恳粋實數都可以在數軸上的一個點來表示。

      3、代數式

      代數式:單獨一個數或者一個字母也是代數式。

      合并同類項:

     、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類項。

     、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴棥

     、墼诤喜⑼愴棔r,我們把同類項的系數相加,字母和字母的指數不變。

      4、整式與分式

      整式:

      ①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。

     、谝粋單項式中,所有字母的指數和叫做這個單項式的次數。

      ③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

      整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

      冪的運算:am+an=a(m+n)

      (am)n=amn

      (a/b)n=an/bn 除法一樣。

      整式的乘法:

      ①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

     、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

      ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

      公式兩條:平方差公式/完全平方公式

      整式的除法:

     、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

     、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。

      分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

      方法:提公因式法、運用公式法、分組分解法、十字相乘法。

      分式:

      ①整式a除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

     、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

      初中數學知識點:直線的位置與常數的關系

     、賙>0則直線的傾斜角為銳角

     、趉<0則直線的傾斜角為鈍角

     、蹐D像越陡,|k|越大

     、躡>0直線與y軸的交點在x軸的上方

      ⑤b<0直線與y軸的交點在x軸的下方

    【數學初中全部知識點總結】相關文章:

    數學初中全部重要知識點總結02-21

    初一數學全部知識點總結10-24

    高中數學全部知識點總結02-20

    初中數學的知識點總結09-19

    初中數學的知識點總結03-11

    高一數學全部知識點有哪些09-24

    小學五年級數學全部知識點總結08-28

    初中數學知識點總結05-30

    初中數學知識點總結10-24

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      在线不卡日本v二区707 | 亚洲精品不卡久久久久久 | 日韩精品在线观看视频 | 五月开心亚洲综合在线 | 日本熟女乱子视频 | 亚洲性线免费观看视频成熟 |