數學必修三重點知識點總結

    時間:2022-04-24 19:00:03 總結 我要投稿

    數學必修三重點知識點總結

      在現實學習生活中,是不是聽到知識點,就立刻清醒了?知識點就是“讓別人看完能理解”或者“通過練習我能掌握”的內容。為了幫助大家掌握重要知識點,以下是小編收集整理的數學必修三重點知識點總結,歡迎閱讀與收藏。

    數學必修三重點知識點總結

      數學必修三重點知識點總結1

      一、集合有關概念

      1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

      2、集合的中元素的三個特性:

      1.元素的確定性;

      2.元素的互異性;

      3.元素的無序性

      說明:

      (1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

      (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

      (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

      (4)集合元素的三個特性使集合本身具有了確定性和整體性。

      3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

      1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

      2.集合的表示方法:列舉法與描述法。

      注意啊:常用數集及其記法:

      非負整數集(即自然數集)記作:N

      正整數集N_或N+整數集Z有理數集Q實數集R

      關于“屬于”的概念

      集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

      列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

      描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。

      ①語言描述法:例:{不是直角三角形的三角形}

      ②數學式子描述法:例:不等式x-3>2的解集是{x?Rx-3>2}或{xx-3>2}

      4、集合的分類:

      1.有限集含有有限個元素的集合

      2.無限集含有無限個元素的集合

      3.空集不含任何元素的集合例:{xx2=-5}

      二、集合間的基本關系

      1.“包含”關系—子集

      注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

      反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

      2.“相等”關系(5≥5,且5≤5,則5=5)

      實例:設A={xx2-1=0}B={-1,1}“元素相同”

      結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

      ①任何一個集合是它本身的子集。AíA

      ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

      ③如果AíB,BíC,那么AíC

      ④如果AíB同時BíA那么A=B

      3.不含任何元素的集合叫做空集,記為Φ

      數學必修三重點知識點總結2

      1、柱、錐、臺、球的結構特征

      (1)棱柱:

      定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

      分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

      表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。

      幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

      (2)棱錐

      定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

      分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

      表示:用各頂點字母,如五棱錐

      幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

      (3)棱臺:

      定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

      分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等

      表示:用各頂點字母,如五棱臺

      幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

      (4)圓柱:

      定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

      幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

      (5)圓錐:

      定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

      幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

      (6)圓臺:

      定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

      幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

      (7)球體:

      定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

      幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

      2、空間幾何體的三視圖

      定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

      注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

      俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

      側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

      3、空間幾何體的直觀圖——斜二測畫法

      斜二測畫法特點:

      ①原來與x軸平行的線段仍然與x平行且長度不變;

      ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

      數學必修三重點知識點總結3

      1、直線方程形式

      一般式:Ax+By+C=0(AB≠0)

      斜截式:y=kx+b(k是斜率b是x軸截距)

      點斜式:y-y1=k(x-x1)(直線過定點(x1,y1))

      兩點式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(x1,y1),(x2,y2))

      截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)

      做題過程中,點斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態。

      在與圓及圓錐曲線結合的過程中,還要用到點到直線距離公式。

      2、直線方程的局限性

      各種不同形式的直線方程的局限性:

      (1)點斜式和斜截式都不能表示斜率不存在的直線;

      (2)兩點式不能表示與坐標軸平行的直線;

      (3)截距式不能表示與坐標軸平行或過原點的直線;

      (4)直線方程的一般式中系數A、B不能同時為零。

      數學直線和圓知識點

      1、直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量))、應用直線方程的點斜式、斜截式設直線方程時,一般可設直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況?

      2、知直線縱截距,常設其方程為或;知直線橫截距,常設其方程為(直線斜率k存在時,為k的倒數)或知直線過點,常設其方程為

      (2)直線在坐標軸上的截距可正、可負、也可為0、直線兩截距相等直線的斜率為-1或直線過原點;直線兩截距互為相反數直線的斜率為1或直線過原點;直線兩截距絕對值相等直線的斜率為或直線過原點

      (3)在解析幾何中,研究兩條直線的位置關系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合

      3、相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是

      4、線性規劃中幾個概念:約束條件、可行解、可行域、目標函數、最優解

      5、圓的方程:最簡方程;標準方程;

      6、解決直線與圓的關系問題有“函數方程思想”和“數形結合思想”兩種思路,等價轉化求解,重要的是發揮“圓的平面幾何性質(如半徑、半弦長、弦心距構成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”

      (1)過圓上一點圓的切線方程

      過圓上一點圓的切線方程

      過圓上一點圓的切線方程

      如果點在圓外,那么上述直線方程表示過點兩切線上兩切點的“切點弦”方程

      如果點在圓內,那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程,(為圓心到直線的距離)

      7、曲線與的交點坐標方程組的解;

      過兩圓交點的圓(公共弦)系為,當且僅當無平方項時,為兩圓公共弦所在直線方程

      數學必修三重點知識點總結4

      (一)解斜三角形

      1、解斜三角形的主要定理:正弦定理和余弦定理和余弦的射影公式和各種形式的面積的公式。

      2、能解決的四類型的問題:(1)已知兩角和一條邊(2)已知兩邊和夾角(3)已知三邊(4)已知兩邊和其中一邊的對角。

      (二)解直角三角形

      1、解直角三角形的主要定理:在直角三角形ABC中,直角為角C,角A和角B是它的兩銳角,所對的邊a、b、c,(1)角A和角B的和是90度;(2)勾股定理:a的平方加上+b的平方=c的平方;(3)角A的正弦等于a比上c,角A的余弦等于b比上c,角B的正弦等于b比上c,角B的余弦等于a比上c;(4)面積的公式s=ab/2;此外還有射影定理,內外切接圓的半徑。

      2、解直角三角形的四種類型:(1)已知兩直角邊:根據勾股定理先求出斜邊,用三角函數求出兩銳角中的一角,再用互余關系求出另一角或用三角函數求出兩銳角中的兩角;(2)已知一直角邊和斜邊,根據勾股定理先求出另一直角邊,問題轉化為(1);(3)已知一直角邊和一銳角,可求出另一銳角,運用正弦或余弦,算出斜邊,用勾股定理算出另一直角邊;(4)已知斜邊和一銳角,先算出已知角的對邊,根據勾股定理先求出另一直角邊,問題轉化為(1)。

      (1)兩類正弦定理解三角形的問題:

      1、已知兩角和任意一邊,求其他的兩邊及一角.

      2、已知兩角和其中一邊的對角,求其他邊角.

      (2)兩類余弦定理解三角形的問題:

      1、已知三邊求三角.

      2、已知兩邊和他們的夾角,求第三邊和其他兩角.

      1.某次測量中,若A在B的南偏東40°,則B在A的()

      A.北偏西40°B.北偏東50°

      C.北偏西50°D.南偏西50°

      答案:A

      2.已知A、B兩地間的距離為10km,B、C兩地間的距離為20km,現測得∠ABC=120°,則A、C兩地間的距離為()

      A.10kmB.103km

      C.105kmD.107km

      解析:選D.由余弦定理可知:

      AC2=AB2+BC2-2AB?BCcos∠ABC.

      又∵AB=10,BC=20,∠ABC=120°,

      ∴AC2=102+202-2×10×20×cos120°=700.

      ∴AC=107.

      3.在一座20m高的觀測臺測得對面一水塔塔頂的仰角為60°,塔底的俯角為45°,觀測臺底部與塔底在同一地平面,那么這座水塔的高度是________m.

      解析:h=20+20tan60°=20(1+3)m.

      答案:20(1+3)

      4.如圖,一船以每小時15km的速度向東航行,船在A處看到一個燈塔B在北偏東60°,行駛4h后,船到達C處,看到這個燈塔在北偏東15°.求此時船與燈塔間的距離.

      解:BCsin∠BAC=ACsin∠ABC,

      且∠BAC=30°,AC=60,

      ∠ABC=180°-30°-105°=45°.

      ∴BC=302.

      即船與燈塔間的距離為302km.

      數學必修三重點知識點總結5

      1.圓

      在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。

      2.圓的相關特點

      (1)徑

      連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r

      通過圓心并且兩端都在圓上的線段叫做直徑,字母表示為d

      直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r

      (2)弦

      連接圓上任意兩點的線段叫做弦.在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。

      (3)弧

      圓上任意兩點間的部分叫做圓弧,簡稱弧,以“⌒”表示。

      大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧,所以半圓既不是優弧,也不是劣弧。優弧一般用三個字母表示,劣弧一般用兩個字母表示。優弧是所對圓心角大于180度的弧,劣弧是所對圓心角小于180度的弧。

      在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。

      (4)角

      頂點在圓心上的角叫做圓心角。

      頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等于相同弧所對的圓心角的一半。

      數學必修三重點知識點總結6

      1.一些基本概念:

      (1)向量:既有大小,又有方向的'量.

      (2)數量:只有大小,沒有方向的量.

      (3)有向線段的三要素:起點、方向、長度.

      (4)零向量:長度為0的向量.

      (5)單位向量:長度等于1個單位的向量.

      (6)平行向量(共線向量):方向相同或相反的非零向量.

      ※零向量與任一向量平行.

      (7)相等向量:長度相等且方向相同的向量.

      2.向量加法運算:

      ⑴三角形法則的特點:首尾相連.

      ⑵平行四邊形法則的特點:共起點

      數學必修三重點知識點總結7

      1.高中數學函數函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于函數A中的任意一個數x,在函數B中都有確定的數f(x)和它對應,那么就稱f:A→B為從函數A到函數B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的函數{f(x)|x∈A}叫做函數的值域.

      注意:

      函數定義域:能使函數式有意義的實數x的函數稱為函數的定義域。

      求函數的定義域時列不等式組的主要依據是:

      (1)分式的分母不等于零;

      (2)偶次方根的被開方數不小于零;

      (3)對數式的真數必須大于零;

      (4)指數、對數式的底必須大于零且不等于1.

      (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的函數.

      (6)指數為零底不可以等于零,

      (7)實際問題中的函數的定義域還要保證實際問題有意義.

      相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致(兩點必須同時具備)

      2.高中數學函數值域:先考慮其定義域

      (1)觀察法

      (2)配方法

      (3)代換法

      3.函數圖象知識歸納

      (1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的函數C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.

      (2)畫法

      A、描點法:

      B、圖象變換法

      常用變換方法有三種

      1)平移變換

      2)伸縮變換

      3)對稱變換

      4.高中數學函數區間的概念

      (1)函數區間的分類:開區間、閉區間、半開半閉區間

      (2)無窮區間

      5.映射

      一般地,設A、B是兩個非空的函數,如果按某一個確定的對應法則f,使對于函數A中的任意一個元素x,在函數B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數A到函數B的一個映射。記作“f(對應關系):A(原象)B(象)”

      對于映射f:A→B來說,則應滿足:

      (1)函數A中的每一個元素,在函數B中都有象,并且象是的;

      (2)函數A中不同的元素,在函數B中對應的象可以是同一個;

      (3)不要求函數B中的每一個元素在函數A中都有原象。

      6.高中數學函數之分段函數

      (1)在定義域的不同部分上有不同的解析表達式的函數。

      (2)各部分的自變量的取值情況.

      (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

      補充:復合函數

      如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。

    【數學必修三重點知識點總結】相關文章:

    高中數學必修三知識點總結04-22

    高一數學必修一知識點總結08-09

    高中數學必修四知識點總結12-03

    語文必修三琵琶行知識點09-23

    高一政治必修一知識點總結12-12

    語文必修三紅樓夢的知識點11-08

    高中生物知識點復習資料總結必修三10-13

    高一物理必修一知識點總結08-30

    高一語文必修一知識點總結01-12

    生物必修三教學總結01-27

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      伊人久久亚洲综合AV影院 | 熟女精品激情免费视频 | 中文字幕不卡在线观看 | 日本一本之道高清不卡免 | 亚洲欧美视频在线观看 | 中文字幕永久免费视频最新 |