初中數學知識點總結

    時間:2025-04-13 08:00:34 知識點總結 我要投稿

    初中數學知識點總結匯總(15篇)

      總結是指社會團體、企業單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經驗,找出差距,得出教訓和一些規律性認識的一種書面材料,他能夠提升我們的書面表達能力,因此好好準備一份總結吧。那么如何把總結寫出新花樣呢?下面是小編精心整理的初中數學知識點總結,歡迎閱讀與收藏。

    初中數學知識點總結匯總(15篇)

    初中數學知識點總結1

      一、重要概念

      1.總體:考察對象的全體。

      2.個體:總體中每一個考察對象。

      3.樣本:從總體中抽出的一部分個體。

      4.樣本容量:樣本中個體的數目。

      5.眾數:一組數據中,出現次數最多的數據。

      6.中位數:將一組數據按大小依次排列,處在最中間位置的一個數(或最中間位置的兩個數據的平均數)

      二、計算方法

      1.樣本平均數:⑴;⑵若,…,,則(a—常數,…,接近較整的常數a);⑶加權平均數:;⑷平均數是刻劃數據的集中趨勢(集中位置)的特征數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越準確。

      2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數的較“整”的常數);若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數據的離散程度(波動大小)的特征數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。

      3.樣本標準差:

      三、應用舉例(略)

      初三數學知識點:第四章直線形

      ★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。

      ☆內容提要☆

      一、直線、相交線、平行線

      1.線段、射線、直線三者的區別與聯系

      從“圖形”、“表示法”、“界限”、“端點個數”、“基本性質”等方面加以分析。

      2.線段的中點及表示

      3.直線、線段的基本性質(用“線段的基本性質”論證“三角形兩邊之和大于第三邊”)

      4.兩點間的距離(三個距離:點-點;點-線;線-線)

      5.角(平角、周角、直角、銳角、鈍角)

      6.互為余角、互為補角及表示方法

      7.角的平分線及其表示

      8.垂線及基本性質(利用它證明“直角三角形中斜邊大于直角邊”)

      9.對頂角及性質

      10.平行線及判定與性質(互逆)(二者的區別與聯系)

      11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。

      12.定義、命題、命題的組成

      13.公理、定理

      14.逆命題

      二、三角形

      分類:⑴按邊分;

      ⑵按角分

      1.定義(包括內、外角)

      2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中

      3.三角形的'主要線段

      討論:①定義②x線的交點—三角形的×心③性質

      ①高線②中線③角平分線④中垂線⑤中位線

      ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

      4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

      5.全等三角形

      ⑴一般三角形全等的判定(sas、asa、aas、sss)

      ⑵特殊三角形全等的判定:①一般方法②專用方法

      6.三角形的面積

      ⑴一般計算公式⑵性質:等底等高的三角形面積相等。

      7.重要輔助線

      ⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

      8.證明方法

      ⑴直接證法:綜合法、分析法

      ⑵間接證法—反證法:①反設②歸謬③結論

      ⑶證線段相等、角相等常通過證三角形全等

      ⑷證線段倍分關系:加倍法、折半法

      ⑸證線段和差關系:延結法、截余法

      ⑹證面積關系:將面積表示出來

      三、四邊形

      分類表:

      1.一般性質(角)

      ⑴內角和:360°

      ⑵順次連結各邊中點得平行四邊形。

      推論1:順次連結對角線相等的四邊形各邊中點得菱形。

      推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

      ⑶外角和:360°

      2.特殊四邊形

      ⑴研究它們的一般方法:

      ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

      ⑶判定步驟:四邊形→平行四邊形→矩形→正方形

      ┗→菱形——↑

      ⑷對角線的紐帶作用:

      3.對稱圖形

      ⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

      4.有關定理:①平行線等分線段定理及其推論1、2

      ②三角形、梯形的中位線定理

      ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

      5.重要輔助線:①常連結四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結頂點和對腰中點并延長與底邊相交”轉化為三角形。

      6.作圖:任意等分線段。

    初中數學知識點總結2

      1.常量和變量

      在某變化過程中可以取不同數值的量,叫做變量.在某變化過程中保持同一數值的量或數,叫常量或常數.

      2.函數

      設在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數.

      3.自變量的取值范圍

      (1)整式:自變量取一切實數.(2)分式:分母不為零.

      (3)偶次方根:被開方數為非負數.

      (4)零指數與負整數指數冪:底數不為零.

      4.函數值

      對于自變量在取值范圍內的一個確定的值,如當x=a時,函數有唯一確定的對應值,這個對應值,叫做x=a時的函數值.

      5.函數的表示法

      (1)解析法;(2)列表法;(3)圖象法.

      6.函數的圖象

      把自變量x的一個值和函數y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內描出一個點,所有這些點的集合,叫做這個函數的圖象.由函數解析式畫函數圖象的步驟:

      (1)寫出函數解析式及自變量的取值范圍;

      (2)列表:列表給出自變量與函數的一些對應值;

      (3)描點:以表中對應值為坐標,在坐標平面內描出相應的點;

      (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.

      7.一次函數

      (1)一次函數

      如果y=kx+b(k、b是常數,k≠0),那么y叫做x的一次函數.

      特別地,當b=0時,一次函數y=kx+b成為y=kx(k是常數,k≠0),這時,y叫做x的正比例函數.

      (2)一次函數的圖象

      一次函數y=kx+b的圖象是一條經過(0,b)點和點的直線.特別地,正比例函數圖象是一條經過原點的直線.需要說明的是,在平面直角坐標系中,“直線”并不等價于“一次函數y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數圖象.

      (3)一次函數的性質

      當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.直線y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為.

      (4)用函數觀點看方程(組)與不等式

      ①任何一元一次方程都可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時,求相應的自變量的值,從圖象上看,相當于已知直線y=kx+b,確定它與x軸交點的橫坐標.

      ②二元一次方程組對應兩個一次函數,于是也對應兩條直線,從“數”的角度看,解方程組相當于考慮自變量為何值時兩個函數值相等,以及這兩個函數值是何值;從“形”的角度看,解方程組相當于確定兩條直線的交點的坐標.

      ③任何一元一次不等式都可以轉化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大于0或小于0時,求自變量相應的取值范圍.

      8.反比例函數(1)反比例函數

      (1)如果(k是常數,k≠0),那么y叫做x的.反比例函數.

      (2)反比例函數的圖象反比例函數的圖象是雙曲線.

      (3)反比例函數的性質

      ①當k>0時,圖象的兩個分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減小.

      ②當k<0時,圖象的兩個分支分別在第二、四象限內,在各自的象限內,y隨x的增大而增大.

      ③反比例函數圖象關于直線y=±x對稱,關于原點對稱.

      (4)k的兩種求法

      ①若點(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

      若雙曲線上任一點A(x,y),AB⊥x軸于B,則S△AOB

      (5)正比例函數和反比例函數的交點問題

      若正比例函數y=k1x(k1≠0),反比例函數,則當k1k2<0時,兩函數圖象無交點;

      當k1k2>0時,兩函數圖象有兩個交點,坐標分別為由此可知,正反比例函數的圖象若有交點,兩交點一定關于原點對稱.

      1.二次函數

      如果y=ax2+bx+c(a,b,c為常數,a≠0),那么y叫做x的二次函數.

      幾種特殊的二次函數:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).

      2.二次函數的圖象

      二次函數y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y=a(x-h)2+k(a≠0)的圖象.

      3.二次函數的性質

      二次函數y=ax2+bx+c的性質對應在它的圖象上,有如下性質:

      (1)拋物線y=ax2+bx+c的頂點是,對稱軸是直線,頂點必在對稱軸上;

      (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當x<時,y隨x的增大而減小;當x>時,y隨x的增大而增大;當x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當x<,y隨x的增大而增大;當時,y隨x的增大而減小;當x=時,y有最大值;

      (3)拋物線y=ax2+bx+c與y軸的交點為(0,c);

      (4)在二次函數y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:

      <0時,拋物線y=ax2+bx+c與x軸沒有公共點.=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點;當=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是和,這兩點的距離為;當當4.拋物線的平移

      拋物線y=a(x-h)2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h)2+k.平移的方向、距離要根據h、k的值來決定.

    初中數學知識點總結3

      1.平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

      2.完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

      3.一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。

      4. 一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

      5.一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

      6.分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。

      7.分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。

      8.最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。

      9.特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。

      10.象限角的平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。

      11.平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。

      12.對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反, Y軸對稱,x前面添負號;原點對稱記,橫縱坐標變符號。

      13.自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

      14.函數圖像的移動規律: 若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。

      15.巧記三角函數定義:初中所學的三角函數有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

      初三數學上冊期末知識點歸納

      單項式與多項式

      僅含有一些數和字母的乘法(包括乘方)運算的式子叫做單項式單獨的一個數或字母也是單項式。

      單項式中的數字因數叫做這個單項式(或字母因數)的數字系數,簡稱系數。

      當一個單項式的系數是1或-1時,“1”通常省略不寫。

      一個單項式中,所有字母的指數的和叫做這個單項式的次數。

      如果在幾個單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,并且相同字母的指數也分別相同,那么,這幾個單項式就叫做同類單項式,簡稱同類項所有的常數都是同類項。

      1、多項式

      有有限個單項式的代數和組成的式子,叫做多項式。

      多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。

      單項式可以看作是多項式的特例

      把同類單項式的系數相加或相減,而單項式中的字母的乘方指數不變。

      在多項式中,所含的不同未知數的個數,稱做這個多項式的元數經過合并同類項后,多項式所含單項式的個數,稱為這個多項式的項數所含個單項式中次項的次數,就稱為這個多項式的次數。

      2、多項式的值

      任何一個多項式,就是一個用加、減、乘、乘方運算把已知數和未知數連接起來的式子。

      3、多項式的恒等

      對于兩個一元多項式f(x)、g(x)來說,當未知數x同取任一個數值a時,如果它們所得的值都是相等的,即f(a)=g(a),那么,這兩個多項式就稱為是恒等的記為f(x)==g(x),或簡記為f(x)=g(x)。

      性質1如果f(x)==g(x),那么,對于任一個數值a,都有f(a)=g(a)。

      性質2如果f(x)==g(x),那么,這兩個多項式的個同類項系數就一定對應相等。

      4、一元多項式的根

      一般地,能夠使多項式f(x)的值等于0的未知數x的值,叫做多項式f(x)的根。

      多項式的加、減法,乘法

      1、多項式的加、減法

      2、多項式的乘法

      單項式相乘,用它們系數作為積的系數,對于相同的字母因式,則連同它的指數作為積的一個因式。

      3、多項式的乘法

      多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。

      常用乘法公式

      公式I平方差公式

      (a+b)(a-b)=a^2-b^2

      兩個數的和與這兩個數的`差的積等于這兩個數的平方差。

      關于數學常見誤區有哪些

      1、被動學習

      許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。

      2、學不得法

      老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

      3、不重視基礎

      一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海。到正規作業或考試中不是演算出錯就是中途“卡殼”。

      4、進一步學習條件不具備

      高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。

      如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的。

      如何整理數學學科課堂筆記

      一、內容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡、重點難點等,簡明清晰地呈現在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學知識做到胸有成竹、清晰完整。

      二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學或老師,把問題弄懂弄通。教師在組織課堂教學時,受到時空的限制,不可能做到顧及每一位同學。相應的,一些問題對部分學生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。

      三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發智力,培養能力,并對提高解題水平大有益處。在這基礎上,若能主動鉆研,另辟蹊徑,則更難能可貴。

      四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點及各部分之間的聯系,掌握基本概念、公式、定理,尋找規律,融會貫通課堂內容都很有作用。同時,很多有經驗的老師在課后小結時,一方面是承上歸納所學內容,另一方面又是啟下布置預習任務或點明后面所要學的內容,做好筆記可以把握學習的主動權,提前作準備,做到目標任務明確。

      五、錯誤反思。學習過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。

      數學常用解題技巧有哪些

      第一,應堅持由易到難的做題順序。近年來高考數學試題的設置是8道選擇題、6道填空題、6到大題,通常稱為866結構。在實體設置的結構中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結構。基礎差的就是644,先把自己能做的、會做的拿到手。這是第一點。

      第二,審題是關鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。

      第三,屬于非智力因素導致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩定下來以后再回過頭來看會頓悟,豁然開朗。

      第四,做選擇題的時候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過程,因此在這個過程中都應不擇手段,只要是能把正確的結論找到就行。考生常用的方法是直接法,從已知的開始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質法(音),一些出現字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結果來。再就是數形結合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質法、數形結合法三種方法都適合。做大題的時候要特別注意解題步驟,規范答題可以減少失分。簡單地說,規范答題就是從上一步的原因到下一步的結論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規范答題。

    初中數學知識點總結4

      1、過兩點有且只有一條直線

      2、兩點之間線段最短

      3、同角或等角的補角相等——補角=180-角度。

      4、同角或等角的余角相等——余角=90-角度。

      5、過一點有且只有一條直線和已知直線垂直

      6、直線外一點與直線上各點連接的所有線段中,垂線段最短

      7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行

      8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

      9、同位角相等,兩直線平行

      10、內錯角相等,兩直線平行

      11、同旁內角互補,兩直線平行

      12、兩直線平行,同位角相等

      13、兩直線平行,內錯角相等

      14、兩直線平行,同旁內角互補

      15、定理

      xxx兩邊的和大于第三邊

      16、推論

      xxx兩邊的差小于第三邊

      17、xxx內角和定理:

      xxx三個內角的和等于180°

      18、推論1

      直角xxx的兩個銳角互余

      19、推論2

      xxx的一個外角等于和它不相鄰的兩個內角的和

      20、推論3

      xxx的一個外角大于任何一個和它不相鄰的內角

      21、全等xxx的對應邊、對應角相等

      22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個xxx全等

      23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的

      兩個xxx全等

      24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個xxx全等

      25、邊邊邊公理(SSS):有三邊對應相等的兩個xxx全等

      26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角xxx全等

      27、定理1

      在角的平分線上的點到這個角的兩邊的距離相等

      28、定理2

      到一個角的兩邊的距離相同的點,在這個角的平分線上

      29、角的平分線是到角的兩邊距離相等的所有點的集合

      30、推論1

      等腰xxx頂角的平分線平分底邊并且垂直于底邊

      31、推論2

      等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

      32、推論3

      等邊xxx的各角都相等,并且每一個角都等于60°

      33、等腰xxx的判定定理

      如果一個xxx有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

      34、等腰xxx的性質定理

      等腰xxx的兩個底角相等

      (即等邊對等角)

      35、推論1

      三個角都相等的xxx是等邊xxx

      36、推論

      有一個角等于60°的等腰xxx是等邊xxx

      37、在直角xxx中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

      38、直角xxx斜邊上的中線等于斜邊上的一半

      39、定理

      線段垂直平分線上的點和這條線段兩個端點的距離相等

      40、逆定理

      和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

      41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

      42、定理1

      關于某條直線對稱的兩個圖形是全等形

      43、定理

      如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

      44、定理3

      兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

      45、逆定理

      如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

      46、勾股定理

      直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

      47、勾股定理的逆定理

      如果xxx的三邊長a、b、c有關系a2+b2=c2,那么這個xxx是直角xxx

      48、定理

      四邊形的內角和等于360°

      49、四邊形的外角和等于360°

      50、多邊形內角和定理

      n邊形的內角的和等于(n-2)×180°

      51、推論

      任意多邊的外角和等于360°

      52、平行四邊形性質定理1

      平行四邊形的對角相等

      53、平行四邊形性質定理2

      平行四邊形的對邊相等

      54、推論

      夾在兩條平行線間的平行線段相等

      55、平行四邊形性質定理3

      平行四邊形的對角線互相平分

      56、平行四邊形判定定理1

      兩組對角分別相等的四邊形是平行四邊形

      57、平行四邊形判定定理2

      兩組對邊分別相等的四邊

      形是平行四邊形

      58、平行四邊形判定定理3

      對角線互相平分的四邊形是平行四邊形

      59、平行四邊形判定定理4

      一組對邊平行相等的四邊形是平行四邊形

      60、矩形性質定理1

      矩形的四個角都是直角

      61、矩形性質定理2

      矩形的對角線相等

      62、矩形判定定理1

      有三個角是直角的四邊形是矩形

      63、矩形判定定理2

      對角線相等的平行四邊形是矩形

      64、菱形性質定理1

      菱形的四條邊都相等

      65、菱形性質定理2

      菱形的.對角線互相垂直,并且每一條對角線平分一組對角

      66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

      67、菱形判定定理1

      四邊都相等的四邊形是菱形

      68、菱形判定定理2

      對角線互相垂直的平行四邊形是菱形

      69、正方形性質定理1

      正方形的四個角都是直角,四條邊都相等

      70、正方形性質定理2

      正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

      71、定理1

      關于中心對稱的兩個圖形是全等的

      72、定理2

      關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

      73、逆定理

      如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

      74、等腰梯形性質定理

      等腰梯形在同一底上的兩個角相等

      75、等腰梯形的兩條對角線相等

      76、等腰梯形判定定理

      在同一底上的兩個角相等的梯

      形是等腰梯形

      77、對角線相等的梯形是等腰梯形

      78、平行線等分線段定理

      如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

      79、推論1

      經過梯形一腰的中點與底平行的直線,必平分另一腰

      80、推論2

      經過xxx一邊的中點與另一邊平行的直線,必平分第三邊

      81、xxx中位線定理

      xxx的中位線平行于第三邊,并且等于它的一半

      82、梯形中位線定理

      梯形的中位線平行于兩底,并且等于兩底和的一半

      L=(a+b)÷2

      S=L×h

      83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc

      如果

      ad=bc,那么a:b=c:d

      84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d

      85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

      86、平行線分線段成比例定理

      三條平行線截兩條直線,所得的對應線段成比例

      87、推論

      平行于xxx一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

      88、定理

      如果一條直線截xxx的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于xxx的第三邊

      89、平行于xxx的一邊,并且和其他兩邊相交的直線,所截得的xxx的三邊與原xxx三邊對應成比例

      90、定理

      平行于xxx一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的xxx與原xxx相似

      91、相似xxx判定定理1

      兩角對應相等,兩xxx相似(ASA)

      92、直角xxx被斜邊上的高分成的兩個直角xxx和原xxx相似

      93、判定定理2

      兩邊對應成比例且夾角相等,兩xxx相似(SAS)

      94、判定定理3

      三邊對應成比例,兩xxx相似(SSS)

      95、定理

      如果一個直角xxx的斜邊和一條直角邊與另一個直角xxx的斜邊和一條直角邊對應成比例,那么這兩個直角xxx相似(HL)

      96、性質定理1

      相似xxx對應高的比,對應中線的比與對應角平分線的比都等于相似比

      97、性質定理2

      相似xxx周長的比等于相似比

      98、性質定理3

      相似xxx面積的比等于相似比的平方

      99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

      100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

      101、圓是定點的距離等于定長的點的集合

      102、圓的內部可以看作是圓心的距離小于半徑的點的集合

      103、圓的外部可以看作是圓心的距離大于半徑的點的集合

      104、同圓或等圓的半徑相等

      105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

      106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

      107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

      108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

      109、定理

      不在同一直線上的三點確定一個圓。

      110、垂徑定理

      垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      111、推論1

      ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

      ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧(直徑)

      ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      112、推論2

      圓的兩條平行弦所夾的弧相等

      113、圓是以圓心為對稱中心的中心對稱圖形

      114、定理

      在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      115、推論

      在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

      116、定理

      一條弧所對的圓周角等于它所對的圓心角的一半

      117、推論1

      同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

      118、推論2

      半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      119、推論3

      如果xxx一邊上的中線等于這邊的一半,那么這個xxx是直角xxx

      120、定理

      圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

      121、①直線L和⊙O相交

      0

      ②直線L和⊙O相切

      d=r

      ③直線L和⊙O相離

      d>r

      122、切線的判定定理

      經過半徑的外端并且垂直于這條半徑的直線是圓的切線

      123、切線的性質定理

      圓的切線垂直于經過切點的半徑

      124、推論1

      經過圓心且垂直于切線的直線必經過切點

      125、推論2

      經過切點且垂直于切線的直線必經過圓心

      126、切線長定理

      從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

      127、圓的外切四邊形的兩組對邊的和相等

      128、弦切角定理

      弦切角等于它所夾的弧對的圓周角?

      129、推論

      如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

      130、相交弦定理

      圓內的兩條相交弦,被交點分成的兩條線段長的積相等

      131、推論

      如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線段的比例中項

      132、切割線定理

      從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

      133、推論

      從圓外一點引圓的兩條割線,這一點到每條

      割線與圓的交點的兩條線段長的積相等

      134、如果兩個圓相切,那么切點一定在連心線上

      135、①兩圓外離

      d>R+r

      ②兩圓外切

      d=R+r

      ③兩圓相交

      R-r<d<R+r(R>r)

      ④兩圓內切

      d=R-r(R>r)

      ⑤兩圓內含

      d<R-r(R>r)

      136、定理

      相交兩圓的連心線垂直平分兩圓的公共弦

      137、定理

      把圓平均分成n(n≥3):

      ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

      ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

      138、定理

      任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

      139、正n邊形的每個內角都等于(n-2)×180°/n

      140、定理

      正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角xxx

      141、正n邊形的面積Sn=pn*rn/2

      p表示正n邊形的周長

      142、正xxx面積√3a^2/4

      a表示邊長

      143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

      144、弧長計算公式:L=n兀R/180——》L=nR

      145、扇形面積公式:S扇形=n兀R^2/360=LR/2

      146、內公切線長=d-(R-r)

      外公切線長=d-(R+r)

    初中數學知識點總結5

      初中數學總復習,是對初中三年來所學數學知識的回顧,鞏固提高,查漏補缺,它不是對知識的簡單重復,而是引導學生對所學知識進行系統歸納和升華,并用已學的知識解決新問題。進一步加深對數學概念的理解,弄清各部分知識的內在聯系,熟練掌握重要的數學方法和數學思想,從而達到開發智力、培養能力的目的因此,初中數學總復習是非常重要的,復習的好壞將決定學生成績的好壞、決定學生掌握知識的牢固程度。一直以來,如何有效提高復習效率,是廣大教師多年來探求的重要課題之一。筆者從1999年以來,一直擔任初中數學的教學任務,所教班級的數學中考考試成績一直名列前茅。下面筆者根據對初中數學總復習的實踐,總結出的一套較為實用的復習方法。

      一、復習基礎知識階段

      在初中數學復習中,第一階段要緊扣課本,疏理教材,使學生在頭腦中形成一個關于初中數學知識的前后相連、縱橫交錯、融會貫通的知識結構。在第一階段中,一般按初中數學知識體系把初中數學知識分成九個單元,即:“數與式”“方程和不等式(組)”“函數及其圖像”“統計與概率”“圖形初步認識和三角形”“四邊形”“相似和解直角三角形”“圓”“圖形的變換、投影與視圖”。按單元進行復習。每個單元按下面步驟進行。

      1、疏理知識結構

      首先,引導學生把本單元的知識用文字、圖表等方式編織知識網絡,用簡表式的結構表示本單元的知識結構;其次,引導學生回顧基礎知識;最后,以基本習題的形式再現知識的內容,即通過一些判斷題、填空題、選擇題、簡單計算題的訓練達到鞏固基礎知識的目的

      2、訓練基本技能和解題技巧

      在理順知識結構的基礎上,把每個單元按知識點分成若干課時,然后按知識點精選例題和練習題,引導學生進行多方練習,多角度思考,正反求解,促進學生掌握基礎知識和解題技巧。

      精選的例題和練習題最好從課本上尋找,因為中考的命題原則是:“源于教材,高于教材。”所選例題、練習題力求典型,緊扣教材。另外,也可從近幾年中考試題中改編新穎的題目進行訓練。

      每課時的教學可按“理順知識――嘗試做例題――講解例題――練習――變式練習――作業”幾個步驟進行。在“理解知識”階段力求簡單明了地揭示本節課所要復習的知識點,領會概念、定理、公理和數學思想方法。講解的例題或作業一般可選擇一部分題進行“一題多變”“一題多解”的題目。在分析、講解例題時切不可就題論題,應注意揭示例題中所反映出的概念、原理和思想方法及解題技巧。

      3、單元測試

      在上述復習的基礎上,復習完每一個單元后,必須出示至少4份試卷。第一份試卷,以引導學生系統地梳理教材、構建知識結構,歸納和總結各種概念、公理、定理、公式為主。第二份試卷,以歸納、總結本單元的常用結論、解題方法、一題多解、一題多變為主。對學生進行測試,以了解學生掌握知識的情況,及時查漏補缺。

      測試題應以教學大綱、考標、教材為依據,要求內容覆蓋面廣,題目搭配合理、難易適中、題型俱全,富有啟發性。通過測試,全面衡量復習效果,一般來說,測試題可從以下幾個方面精選題目:(1)全面體現本單元的基礎知識的填空題和選擇題;(2)本單元所反映出的基本技能和技巧的解答題;(3)綜合運用本單元知識的綜合題。

      上面三方面試題的比例為6∶3∶1測試完后,教師進行講評,對學生未弄懂的知識點及時進行補救。

      二、綜合訓練,加強重點知識階段

      在完成第一階段的基礎上,根據初中數學知識的重點,選擇一些較為典型的綜合題,引導學生合作探索和研究,以培養學生綜合運用知識來分析問題和解決問題的能力。選擇的.題目一般從本市及全省近5年的中考試題中去精選。

      綜合題,一般來說有代數綜合題、幾何綜合題、代數和幾何相結合的綜合題。代數綜合題的重點應是二次方程和二次函數;幾何綜合題的重點是三角形、四邊形和圖;代數與幾何相結合的綜合題則是方程、函數與圖像相結合的題。

      對于綜合題的訓練,一般采用“嘗試練習――分析――講解――歸納解題方法與技巧――練習”的方式進行。對重點問題進行一題多解、一題多變的訓練。

      三、綜合測試,查漏補缺階段

      為了進一步鞏固數學知識,全面考查復習效果,提高學生的心理素質,在第二階段復習結束時,可進行模擬測試。測試題一般自擬幾套和選擇其他省市上屆中考題和本省往屆的中考題,模擬試題,力求全面再現初中數學知識和方法,既要有考查雙基的基礎題,又要有考查學生能力的綜合題。有的知識還要與高中知識銜接并拓展。

      考完一套,及時講評,與學生一起分析,共同探討,列出知識清單使得每個學生經歷知識收集、整理的過程,把書學“薄”,有效地回顧了一章書所學的知識。

    初中數學知識點總結6

      一、初中數學基本概念

      1.方程:含有未知數的等式叫做方程。

      2.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。

      3.二元一次方程:含有兩個未知數,并且未知數的次數是1的二元一次方程。

      4.二元一次方程組:由兩個二元一次方程組成的方程組。

      5.一元二次方程:含有一個未知數,并且未知數的最高次數是2的整式方程。

      6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數的值。

      7.一元二次方程的根:一元二次方程的解。

      8.一元二次方程的判別式:當a是正數時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個不相等的實數根;當a是負數時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程沒有實數根;當a是零時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個相等的實數根。

      9.函數:在某變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,那么稱y是x的函數,x叫做自變量。

      10.一次函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,那么稱y是x的一次函數。

      11.正比例函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,并且這個數值在比例上成正比,那么稱y是x的比例函數。

      12.反比例函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,并且這個數值在比例上成反比,那么稱y是x的反比例函數。

      13.平行四邊形:在同一個平面內兩組對角分別平行的四邊形叫做平行四邊形。

      14.矩形:有一個內角是直角的平行四邊形叫做矩形。

      15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。

      16.正方形:四邊相等的矩形叫做正方形。

      17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。

      18.三角形:在同一個平面內由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

      19.中線:連接一個頂點和它對邊的中點的線段叫做中線。

      20.高線:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做高線。

      21.角平分線:三角形的一個內角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做角平分線。

      22.中位線:連接三角形兩邊中點的線段叫做中位線。

      23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。

      24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的.一元二次方程可采用直接開平方的方法解一元二次方程的方法。

      25.配方法:把一元二次方程的常數項移到方程的右邊,兩邊加上一次項系數的一半的平方,再用右邊的式子除以左邊的式子,得到一個平方的形式,再用直接開平方的方法求解一元二次方程的方法。

      26.公式法:用求根公式解一元二次方程的方法。

      27.因式分解法:將一元二次方程分解成兩個一次因式的積等于0的一元二次方程,然后將各個因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。

      二、初中數學基本運算

      1.整式:單項式和多項式的統稱。

      2.單項式:由數字和字母的積組成的代數式叫做單項式。單獨的一個數字或字母也叫做單項式。

      3.多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項。其中不含字母的項叫做常數

    初中數學知識點總結7

      1、相交線

      對頂角相等。

      過一點有且只有一條直線與已知直線垂直。

      連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。

      2、平行線

      經過直線外一點,有且只有一條直線與這條直線平行。

      如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

      直線平行的`條件:

      兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。

      兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。

      兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。

      3、平行線的性質

      兩條平行線被第三條直線所截,同位角相等。

      兩條平行線被第三條直線所截,內錯角相等。

      兩條平行線被第三條直線所截,同旁內角互補。

      判斷一件事情的語句,叫做命題。

    初中數學知識點總結8

      動點與函數圖象問題常見的四種類型:

      1、三角形中的動點問題:動點沿三角形的邊運動,根據問題中的常量與變量之間的關系,判斷函數圖象.

      2、四邊形中的動點問題:動點沿四邊形的邊運動,判斷函數圖象.

      3、圓中的動點問題:動點沿圓周運動,判斷函數圖象.

      4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,判斷函數圖象.

      圖形運動與函數圖象問題常見的三種類型:

      1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經過三角形或四邊形,進行分段,判斷函數圖象.

      2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經過另一個多邊形,判斷函數圖象.

      3、多邊形與圓的`運動圖形問題:把一個圓沿一定方向運動經過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經過一個圓,判斷函數圖象.

      動點問題常見的四種類型:

      1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構成的新圖形與原圖形的邊或角的關系.

      2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關系.

      3、圓中的動點問題:動點沿圓周運動,探究構成的新圖形的邊角等關系.

      4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構成的三角形是等腰三角形或與已知圖形相似等問題.

      總結反思:

      本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的解析式,三角形全等的判定和性質,等腰直角三角形的性質,平行線的性質等,數形結合思想的應用是解題的關鍵.

      解答動態性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發掘“動”與“靜”的內在聯系,尋求變化規律,從變中求不變,從而達到解題目的

      解答函數的圖象問題一般遵循的步驟:

      1、根據自變量的取值范圍對函數進行分段.

      2、求出每段的解析式.

      3、由每段的解析式確定每段圖象的形狀.

      對于用圖象描述分段函數的實際問題,要抓住以下幾點:

      1、自變量變化而函數值不變化的圖象用水平線段表示.

      2、自變量變化函數值也變化的增減變化情況.

      3、函數圖象的最低點和最高點.

    初中數學知識點總結9

      初中數學例題的知識點梳理

      有理數的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好。【注】“大”減“小”是指絕對值的大小。

      合并同類項:合并同類項,法則不能忘,只求系數和,字母、指數不變樣。

      去、添括號法則:去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。

      恒等變換:兩個數字來相減,互換位置最常見,正負只看其指數,奇數變號偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n

      平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

      完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

      因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。

      “代入”口決:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小—中—大)

      單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行。

      一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。

      一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

      一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

      分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。

      分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。

      最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。

      特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(—,+),(—,—)和(+,—),四個象限分前后;X軸上y為0,x為0在Y軸。

      象限角的'平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。

      平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。

      對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。

      自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

      函數圖像的移動規律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。

      一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。

      二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

      反比例函數圖像與性質口訣:反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。

      巧記三角函數定義:初中所學的三角函數有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:

      正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

      三角函數的增減性:正增余減。

      特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。

      數字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)

      平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。

      梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現;延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

      添加輔助線歌:輔助線,怎么添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。

      圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯,圓周、圓心、弦切角,細找關系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等于內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。

      學霸分享的數學復習技巧

      1、把答案蓋住看例題

      例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

      所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

      經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

      2、研究每題都考什么

      數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰術,而是要通過一題聯想到很多題。

      3、錯一次反思一次

      每次業及考試或多或少會發生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現。因此平時注意把錯題記下來。

      學生若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

      4、分析試卷總結經驗

      每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。

      數學解題方法分別有哪些

      1、配方法

      所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的.最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

      2、因式分解法

      因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

      3、換元法

      替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

      4、判別式法與韋達定理

      一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

      韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

      5、待定系數法

      在解決數學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。

      6、構造法

      在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。

      數學經常遇到的問題解答

      1、要提高數學成績首先要做什么?

      這一點,是很多學生所關注的,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現,因此要提高數學成績先要把基礎夯實。

      2、基礎不好怎么學好數學?

      對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

      3、是否要采用題海戰術?

      方法君曾不止一次提到了“題海戰術”,題海戰術究竟可不可取呢?“題海戰術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。

      4、做題總是粗心怎么辦?

      很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。

    初中數學知識點總結10

      第一章:勾股定理

      1.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。

      2.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。

      3.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么兩條直角邊長的平方和等于斜邊長的.平方。

      4.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a、b、c三者之間的關系是a的平方加上b的平方等于c的平方。

      第二章:四邊形

      1.平行四邊形:兩組對邊分別平行的四邊形叫做平行四邊形。

      2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。

      3.矩形:有一個角是直角的平行四邊形叫做矩形。

      4.正方形:有一組鄰邊相等的矩形叫做正方形。

      5.平行四邊形的性質:對邊平行且相等;對角相等,且互補;對角線互相平分。

      6.菱形的性質:四邊相等;對角線互相垂直,且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半。

      7.矩形的性質:矩形的四個角都是直角;矩形的對角線相等。

      8.正方形的性質:四個角都是直角,四條邊都相等;對角線相等,且互相垂直平分,每條對角線平分一組對角;正方形被兩條對角線分成四個全等的直角三角形;正方形是特殊的長方形,所以正方形具有矩形的一切性質。

      第三章:一次函數

      1.一次函數:如果所給函數表達式是正比例函數,那么它經過原點(0,0);如果所給函數表達式是一次函數(斜截式),那么它經過原點(0,0)。

      2.正比例函數:如果y=kx(k是常數,且k≠0),那么y叫做x的正比例函數。

      3.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。

      4.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。

      5.正比例函數:如果y=kx(k是常數,且k≠0),那么y叫做x的正比例函數。

      6.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。

      7.正比例函數:如果y=kx(k是常數,且k≠0),那么y叫做x的正比例函數。

      8.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。

      9.正比例函數:如果y=kx(k是常數,且k≠0),那么y叫做x的正比例函數。

      10.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。

    初中數學知識點總結11

      20xx年的工作臨近尾聲,回首本年度真是忙碌而充實,本年度我即擔任教導處主任一職又擔任班主任工作,經常是忙的喝口水的時間都沒有。雖然在教導處主任的崗位上我只有不到一年的工作經驗,但是在李校長的關心和培養下,在全體領導、老師、家長的熱情支持和幫助下,各項工作得以順利開展并在一些方面有了較為明顯的進步。現對自己一年來所做工作加以梳理和反思,力求在總結中發現不足,在反思中縮中差距,在創新中不斷提升。

      一、思想品德方面

      我熱愛教育事業,始初不忘人民教師職責,愛學校、愛學生。作為一名名師,我從自身嚴格要求自己,通過政治思想、學識水平、教育教學能力等方面的不斷提高來塑造自己的行為,使自己在教育行業中不斷成長,為社會培養出優秀的人才,打下堅實的基礎。

      二、主要成績

      今年是我到工作的第五個年頭,幾年來我一直擔任班主任和年級的組長,同時又負責學校教導處工作,一直以來,我始初牢記"踏實工作、真心待人"的原則,在工作中嚴格要求自己,刻苦鉆研業務,不斷提高業務水平,不斷學習新知識,探索教育教學規律,改進教育教學方法,努力使自己成為專家型教師。

      1、在班主任工作方面:我投入了極強的責任心,關注每一名學生,及時發現他們的各種心理或行為動態,還有學習的心態與學習情況,用愛心與耐心澆灌每一個孩子,并且及時與家長、科任老師進行溝通,使孩子在各個方面得到發展,幾年來,與學生形成了亦師亦友的和諧師生關系,在18年被評為省級師德先進個人,19年被評為省級優秀教師。加強學習,努力提升自身修為。

      2、在教學方面:我嚴格要求自己,用心備課上課,每一節課都精心準備課件,仔細研究每一道習題,真正做到講練結合,學以致用,形成了趣實活新的教學風格,同時,在教研方面,我積極去聽課評課,認真學習別人上課的長處,為己所用。在17年被評為市級名師工作室主持人,18年被評為省級學科帶頭人。

      3、在教導方面:在做好班主任工作的同時,我作為校長助理、教導主任,我能正確定位,努力做好校長的助手,協調各種工作。

      一直以來我總是以飽滿的熱情對待本職工作,兢兢業業,忠于職守,凡是要求老師們做到的,自己首先做到。我始初認真落實學校制定的教學教研常規,不斷規范教師教學行為。從學期初開始,認真執行教學教研工作計劃和工作記錄,嚴格按照學校修訂的規章制度去要求師生,定期檢查教師教案及作業批改情況,發現問題及時反饋及時做好總結并進行跟蹤檢查,期末對教案進行歸納整理。規范日常巡課制度,定時巡課與不定時巡課相結合,不定時跟班聽課,與執教教師共同切磋存在的問題,加強對教學工作的監控,促進教學質量的提高。

      學校要發展、要生存必須有一批高素質的教師隊伍,同樣教師今后要生存要發展必須具有過硬的本領。我清楚的認識到必須加強骨干教師、青年教師的培養力度,也借助各種機遇,為教師搭建自我展示的'平臺。加大新教師的培養力度,開展“師徒結對子”活動,通過推門聽課,領導聽課、一課三研、師傅引領課、新教師展示課等,鼓勵教師參加各級各類比賽、培訓活動等形式,促進新教師的迅速成長。我精心制定了以人為本的校本培訓計劃,每學期開展十多次骨干培訓活動,并進行讀書交流活動,活動做到人人有準備,人人有發言,人人有反思,老師們一同感悟,一起分享,在探索和交流中,不斷提升教學水準。

      通過開展語、數集體備課—上課—聽課——評課研討這樣的教研活動觀摩,讓更多的教師參與到校本教研活動中來,增強了教研活動的實效性,提高了教師的課堂教學水平。新教師展示課活動,“中荷才露尖尖角”,新教師在歷練中成長;常態化的研討課,“萬紫千紅總是春”,老師們取長補短,共同促進;名師、骨干教師的精品課,“萬綠叢中一點紅”,起了引領示范的作用。

      教科研是教學的源泉,是教改的先導,我十分重視課題研究、管理。18年獨立承擔了省級重點課題研究已經結題,并被評為科研課題先進個人,19年又獨立承擔了中課題的研究,已經接近尾聲。

      4、自身提高方面:我能利用課余時間閱讀一些教育名著及教育教學刊物,并及時做好讀書筆記,建立個人博客,發表自己原創的教學感想、教案設計、學習心得、教育理念等文章。一份耕耘,一份收獲”,一年來,我積極參加各級各類比賽,多次獲獎,還被評為縣級學科帶頭人。

      三、存在的不足

      回顧一年來的工作,我雖然取得了一些成績,積累了一些經驗,但是,實事求是地說,與領導的要求和自己的期待還有差距,主要表現在:

      1、對教導處管理工作還須腳踏實地地去做,謙虛認真地去學,以使自己取得更好的成績。

      2、教學方面對差生主要是采取開中灶、嚴要求的方式進行強化管理,對其心理攻堅尚不到位,所以見效慢,容易激化師生間的矛盾,還得在實踐中多摸索。課堂教學水平有待提高,要與同事們多切磋,多學習。

      3、教研方面,仍需強化、深化、細化地系統學習相關理論知識,所寫隨感不能僅僅停留在表面現象,還應善于總結提升,以形成有一定深度的,并具有自我指導意義的理論型文字。

      另外,意志仍不夠堅強,堅持還不夠徹底,實是欠缺“鐵杵磨成針”的精神。總之,回顧取得的成績,固然可喜,值得欣慰,但面對未來,仍感任重道遠、不敢懈怠。

      最后,用一句話作為本年度的工作總結,下一年度的開始,也就是:既然選擇了遠方,必然風雨兼程。我將某某,繼續前行!

      關于數學常見誤區有哪些

      1、被動學習

      許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。

      2、學不得法

      老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

      3、不重視基礎

      一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海。到正規作業或考試中不是演算出錯就是中途“卡殼”。

      4、進一步學習條件不具備

      高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。

      如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的。

    初中數學知識點總結12

      初中數學的學科地位很高,一直以來是三大學科之一,影響著物理化學的學習。

      圓心角

      在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

      推理過程

      根據旋轉的'性質,將∠aob繞圓心o旋轉到∠a'ob'的位置時,顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點a與a'重合,b與b'重合。

      因此,弧ab與弧a'b'重合,ab與a'b'重合。即

      弧ab=弧a'b',ab=a'b'。

      則得到上面定理。

      同樣還可以得到:

      在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

      在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。

      所以,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,它們所對應的其余各組量也相等。

      圓的圓心角知識要領很容易掌握,經常會出現在關于圓的證明題中。

    初中數學知識點總結13

      一、實數

      1.平方根性質:

      (1)一個正數有兩個平方根,它們互為相反數;

      (2)零的平方根是零;

      (3)負數沒有平方根。

      2.算術平方根性質:

      (1)一個正數的正的平方根叫做它的算術平方根;

      (2)零的算術平方根是零;

      (3)負數沒有算術平方根。

      3.立方根性質:

      (1)正數的立方根是正數;

      (2)零的立方根是零;

      (3)負數的立方根是負數。

      4.實數的性質:

      (1)零是唯一沒有平方根的數;

      (2)正數和負數可以沒有算術平方根;

      (3)任何實數的立方根只有唯一的一個;

      (4)正數的立方根與它本身和零同類。

      二、整式的運算

      1.整式范圍:

      (1)整式可以化為分數或整數;

      (2)整式可以化為負數或非負數;

      (3)整式可以化為奇數或偶數;

      (4)整式可以化簡為分數指數冪。

      2.單項式:

      (1)單項式的系數是數字因數;

      (2)一個單項式中所有字母的指數的和叫做單項式的次數。

      3.多項式:

      (1)多項式的每一項都是一個單項式;

      (2)一個多項式的'項數與多項式中含有幾個單項式有關。

      4.同底數冪的乘法:

      (1)同底數冪相乘,底數不變,指數相加;

      (2)同底數冪相除,底數不變,指數相減。

      5.冪的乘方:

      冪的乘方,底數不變,指數相乘。

      6.積的乘方:

      (1)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘;

      (2)1的乘方等于1。

      7.同底數冪的除法:

      (1)同底數冪相除,底數不變,指數相減;

      (2)0的任何正整數次冪都是0。

      8.分式:

      (1)分式是整式的一種,在整式中區別于整式,分式的分母中必須含有字母;

      (2)分式的值等于分子除以分母。

      9.分式的運算:

      (1)分式的乘方:分式與分式相乘,再把被乘式的分子、分母分別與乘式的分子、分母相乘,即分子相乘的積做積的分子,分母相乘的積做積的分母;

      (2)分式的除法:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘,即分子相除的商做被除式的分子,分母相除的商做被除式的分母;

      (3)分式的加減:異分母分式的加減運算,為了使不同分母的分數直接相加減不便,因此常把不同分母的分數分別化成與原來的分母相同的分母后再相加減。

      三、方程與方程組

      1.方程:

      (1)含有未知數的等式叫方程;

      (2)使方程左右兩邊相等的未知數的值,叫做方程的解;

      (3)求方程的解的過程叫做解方程。

      2.方程的解:

      (1)能使方程左右兩邊相等的未知數的值;

      (2)一個數(它不一定是數,也可以是符號和運算)是某一等式(含有未知數的等式)的解,那么這個數就叫做該等式的解。

      3.一元一次方程:

      (1)只有一個未知數;

      (2)未知數的最高次數為1;

      (3)整式方程。

      4.方程的解法:

      (1)去分母:在方程兩端同乘各分母的最小公倍數;

      (2)去括號:去括號要變號;

      (3)移項:把含有未知數的項移到等號的一邊,其他項移到另一邊;

      (4)合并同類項:化未知數為已知數;

      (5)系數化成1:在方程兩端同除以未知數的系數。

      5.列方程解應用題

    初中數學知識點總結14

      常用數學公式

      乘法與因式分a2-b2=(a+b)(a-b)

      a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

      三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

      |a-b|≥|a|-|b|-|a|≤a≤|a|

      一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a

      根與系數的關系X1+X2=-b/aX1*X2=c/a注:韋達定理

      判別式

      b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根

      b2-4ac

      某些數列前n項和

      1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

      2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4

      1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

      正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

      余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

      圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標準方程y2=2pxy2=-2pxx2=2pyx2=-2py

      直棱柱側面積S=c*h斜棱柱側面積S=c"*h

      正棱錐側面積S=1/2c*h"正棱臺側面積S=1/2(c+c")h"圓臺側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l

      弧長公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r

      錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側棱長柱體體積公式V=s*h圓柱體V=pi*r2h

      1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等

      5過一點有且只有一條直線和已知直線垂直

      6直線外一點與直線上各點連接的所有線段中,垂線段最短

      7平行公理經過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內錯角相等,兩直線平行11同旁內角互補,兩直線平行12兩直線平行,同位角相等13兩直線平行,內錯角相等14兩直線平行,同旁內角互補

      15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

      17三角形內角和定理三角形三個內角的和等于180°18推論1直角三角形的兩個銳角互余

      19推論2三角形的一個外角等于和它不相鄰的兩個內角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內角21全等三角形的對應邊、對應角相等

      22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

      26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等

      28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合

      30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

      32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°

      34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

      35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

      39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

      40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關于某條直線對稱的兩個圖形是全等形

      43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

      44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

      45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

      46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形48定理四邊形的內角和等于360°49四邊形的外角和等于360°

      50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

      52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

      55平行四邊形性質定理3平行四邊形的對角線互相平分

      56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

      59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1矩形的四個角都是直角61矩形性質定理2矩形的對角線相等

      62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質定理1菱形的四條邊都相等

      65菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

      68菱形判定定理2對角線互相垂直的平行四邊形是菱形

      69正方形性質定理1正方形的四個角都是直角,四條邊都相等

      70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

      71定理1關于中心對稱的兩個圖形是全等的

      72定理2關于中心對稱的'兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分73逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

      74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

      76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

      78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

      79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰

      80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d

      85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

      86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

      89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

      90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

      91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)

      94判定定理3三邊對應成比例,兩三角形相似(SSS)

      95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

      97性質定理2相似三角形周長的比等于相似比

      98性質定理3相似三角形面積的比等于相似比的平方

      99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

      100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

      101圓是定點的距離等于定長的點的集合

      102圓的內部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等

      105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

      106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

      107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

      108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

      109定理不在同一直線上的三點確定一個圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

      ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

      114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等116定理一條弧所對的圓周角等于它所對的圓心角的一半

      117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

      121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

      122切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線

      123切線的性質定理圓的切線垂直于經過切點的半徑124推論1經過圓心且垂直于切線的直線必經過切點125推論2經過切點且垂直于切線的直線必經過圓心

      126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等

      128弦切角定理弦切角等于它所夾的弧對的圓周角

      129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

      131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

      132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

      133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

      134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

      ④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

      ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

      ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓139正n邊形的每個內角都等于(n-2)×180°/n

      140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長

      143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長計算公式:L=n兀R/180

      145扇形面積公式:S扇形=n兀R^2/360=LR/2146內公切線長=d-(R-r)外公切線長=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2

    初中數學知識點總結15

      整式的加減

      2、1整式

      1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數、單項式指的是數或字母的積的代數式、單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式、

      2、單項式的系數:是指單項式中的數字因數;

      3、單項數的次數:是指單項式中所有字母的指數的和、

      4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,常數項,多項式的次數就是多項式中次數的次數。多項式的次數是指多項式里次數項的次數,這里是次數項,其次數是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的項包括它前面的性質符號、

      5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。

      6、單項式和多項式統稱為整式。

      2、2整式的加減

      1、同類項:所含字母相同,并且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。

      2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數相同,二者缺一不可、同類項與系數大小、字母的排列順序無關

      3、合并同類項:把多項式中的同類項合并成一項。可以運用交換律,結合律和分配律。

      4、合并同類項法則:合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變;

      5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

      6、整式加減的一般步驟:

      一去、二找、三合

      (1)如果遇到括號按去括號法則先去括號、(2)結合同類項、(3)合并同類項葫蘆島

      初中數學知識點歸納

      三角和的公式

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      倍角公式

      tan2A = 2tanA/(1-tan2 A)

      Sin2A=2SinA?CosA

      Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

      三倍角公式

      sin3A = 3sinA-4(sinA)3;

      cos3A = 4(cosA)3 -3cosA

      tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

      三角函數特殊值

      α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

      α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

      α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

      a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

      α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

      α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

      α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

      α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

      α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

      α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

      α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

      α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

      三角函數記憶順口溜

      1三角函數記憶口訣

      “奇、偶”指的是π/2的.倍數的奇偶,“變與不變”指的是三角函數的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

      以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。

      2符號判斷口訣

      全,S,T,C,正。這五個字口訣的意思就是說:第一象限內任何一個角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。

      也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱。口訣中未提及的都是負值。

      “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數為正值。

      3三角函數順口溜

      三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。

      同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

      中心記上數字一,連結頂點三角形。向下三角平方和,倒數關系是對角,頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

      計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。

      逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

      萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

      一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

      三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;

      利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

      初中數學知識點大全

      誘導公式的本質

      所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。

      常用的誘導公式

      公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:

      sin(2k)=sin kz

      cos(2k)=cos kz

      tan(2k)=tan kz

      cot(2k)=cot kz

      公式二: 設為任意角,的三角函數值與的三角函數值之間的關系:

      sin( )=-sin

      cos( )=-cos

      tan( )=tan

      cot( )=cot

      公式三: 任意角與 -的三角函數值之間的關系:

      sin(-)=-sin

      cos(-)=cos

      tan(-)=-tan

      cot(-)=-cot

      公式四: 利用公式二和公式三可以得到與的三角函數值之間的關系:

      sin( )=sin

      cos( )=-cos

      tan( )=-tan

      cot( )=-cot

    【初中數學知識點總結】相關文章:

    初中數學的知識點總結03-11

    初中數學的知識點總結09-19

    初中數學知識點總結06-24

    初中數學知識點總結10-24

    初中數學幾何知識點總結03-16

    初中數學代數知識點總結03-06

    初中數學必考知識點總結02-22

    初中數學知識點總結03-07

    初中數學知識點總結03-04

    初中數學函數知識點總結04-12

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      亚洲免费爽视频在线 | 一本久久精品国产综合 | 午夜A级理论片在线播放 | 一本久道久久综合婷婷日韩 | 思思热精品视频免费在线观看 | 亚洲一区二区三区A∨ |