初中數(shù)學(xué)知識點(diǎn)總結(jié)

    時間:2025-02-19 06:54:22 知識點(diǎn)總結(jié) 我要投稿

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)

      總結(jié)在一個時期、一個年度、一個階段對學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它能夠給人努力工作的動力,快快來寫一份總結(jié)吧。總結(jié)一般是怎么寫的呢?以下是小編為大家整理的人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華),歡迎大家分享。

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)1

      第二章整式的加減

      2、1整式

      1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù)、單項式指的是數(shù)或字母的積的代數(shù)式、單獨(dú)一個數(shù)或一個字母也是單項式、因此,判斷代數(shù)式是否是單項式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運(yùn)算關(guān)系,其也不是單項式、

      2、單項式的`系數(shù):是指單項式中的數(shù)字因數(shù);

      3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和、

      4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關(guān)鍵要看代數(shù)式中的每一項是否是單項式、每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)項的次數(shù),這里是次數(shù)項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的項包括它前面的性質(zhì)符號、

      5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項式和多項式的每一項都包括它前面的符號。

      6、單項式和多項式統(tǒng)稱為整式。

      2、2整式的加減

      1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關(guān)。

      2、同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可、同類項與系數(shù)大小、字母的排列順序無關(guān)

      3、合并同類項:把多項式中的同類項合并成一項。可以運(yùn)用交換律,結(jié)合律和分配律。

      4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

      5、去括號法則:去括號,看符號:是正號,不變號;是負(fù)號,全變號。

      6、整式加減的一般步驟:

      一去、二找、三合

      (1)如果遇到括號按去括號法則先去括號、(2)結(jié)合同類項、(3)合并同類項葫蘆島

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)2

      一元一次方程定義

      通過化簡,只含有一個未知數(shù),且含有未知數(shù)的最高次項的次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

      一元指方程僅含有一個未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標(biāo)準(zhǔn)形式。這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。

      即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項為1;⑷含未知數(shù)的項的系數(shù)不為0。

      一元一次方程的五個核心問題

      一、什么是等式?1+1=1是等式嗎?

      表示相等關(guān)系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數(shù)值代替等式中的字母,等式的兩邊總是相等,由數(shù)字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數(shù)值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

      一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

      等式與代數(shù)式不同,等式中含有等號,代數(shù)式中不含等號。

      等式有兩個重要性質(zhì)1)等式的兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數(shù)除數(shù)不為零,所得結(jié)果仍然是一個等式。

      二、什么是方程,什么是一元一次方程?

      含有未知數(shù)的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點(diǎn):一是不是等式;二是否含有未知數(shù),兩者缺一不可。

      只含有一個未知數(shù),并且含未知數(shù)的`式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不是0的方程叫做一元一次方程。其標(biāo)準(zhǔn)形式是ax+b=0(a不為0,a,b是已知數(shù)),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實(shí)際上是一個一元一次方程。(2)整式方程分母中不含有未知數(shù)。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因?yàn)樗姆帜钢泻形粗獢?shù)x,所以,它不是整式方程。如果將上面的方程進(jìn)行化簡,則為x=2,這時再去作判斷,將得到錯誤的結(jié)論。

      凡是談到次數(shù)的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數(shù)最少且次數(shù)最低的方程。

      三、等式有什么牛掰的基本性質(zhì)嗎?

      將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據(jù)是等式的基本性質(zhì)1。

      移項時不一定要把含未知數(shù)的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數(shù)的項移到右邊,而把常數(shù)項移到左邊,這樣會顯得簡便些。

      去分母,將未知數(shù)的系數(shù)化為1,則是依據(jù)等式的基本性質(zhì)2進(jìn)行的。

      四、等式一定是方程嗎?方程一定是等式嗎?

      等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數(shù)式,但它們還是有區(qū)別的。方程僅是含有未知數(shù)的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。

      五、"解方程"與"方程的解"是一回事兒嗎?

      方程的解是使方程左、右兩邊相等的未知數(shù)的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結(jié)果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)3

      1、一元二次方程解法:

      (1)配方法:(X±a)2=b(b≥0)注:二次項系數(shù)必須化為1

      (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

      若b2-4ac>0則有兩個不相等的`實(shí)根,若b2-4ac=0則有兩個相等的實(shí)根,若b2-4ac<0則無解

      若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

      (3)分解因式法

      ①提公因式法:ma+mb=0→m(a+b)=0

      平方差公式:a2-b2=0→(a+b)(a-b)=0

      ②運(yùn)用公式法:

      完全平方公式:a2±2ab+b2=0→(a±b)2=0

      ③十字相乘法

      2、銳角三角函數(shù)定義

      銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

      正弦(sin):對邊比斜邊,即sinA=a/c;

      余弦(cos):鄰邊比斜邊,即cosA=b/c;

      正切(tan):對邊比鄰邊,即tanA=a/b;

      余切(cot):鄰邊比對邊,即cotA=b/a;

      3、積的關(guān)系

      sinα=tanα·cosα

      cosα=cotα·sinα

      tanα=sinα·secα

      cotα=cosα·cscα

      secα=tanα·cscα

      cscα=secα·cotα

      4、倒數(shù)關(guān)系

      tanα·cotα=1

      sinα·cscα=1

      cosα·secα=1

      5、兩角和差公式

      sin(A+B) = sinAcosB+cosAsinB

      sin(A-B) = sinAcosB-cosAsinB

      cos(A+B) = cosAcosB-sinAsinB

      cos(A-B) = cosAcosB+sinAsinB

      tan(A+B) = (tanA+tanB)/(1-tanAtanB)

      tan(A-B) = (tanA-tanB)/(1+tanAtanB)

      cot(A+B) = (cotAcotB-1)/(cotB+cotA)

      cot(A-B) = (cotAcotB+1)/(cotB-cotA)

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)4

      ①直線和圓無公共點(diǎn),稱相離。 AB與圓O相離,d>r。

      ②直線和圓有兩個公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

      ③直線和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的`距離)

      平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

      1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程

      如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。

      如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。

      如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。

      2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

      當(dāng)x=-C/Ax2時,直線與圓相離;

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)5

      初中數(shù)學(xué)基礎(chǔ)知識點(diǎn)

      平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

      立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

      實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實(shí)數(shù)都可以在數(shù)軸上的一個點(diǎn)來表示。

      初中數(shù)學(xué)平行四邊形的性質(zhì)知識點(diǎn)

      1.定義:兩組對邊分別平行的四邊形叫平行四邊形

      2.平行四邊形的性質(zhì)

      (1)平行四邊形的對邊平行且相等;

      (2)平行四邊形的'鄰角互補(bǔ),對角相等;

      (3)平行四邊形的對角線互相平分;

      3.平行四邊形的判定

      平行四邊形是幾何中一個重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個四邊形是平行四邊形是個重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

      第一類:與四邊形的對邊有關(guān)

      (1)兩組對邊分別平行的四邊形是平行四邊形;

      (2)兩組對邊分別相等的四邊形是平行四邊形;

      (3)一組對邊平行且相等的四邊形是平行四邊形;

      第二類:與四邊形的對角有關(guān)

      (4)兩組對角分別相等的四邊形是平行四邊形;

      第三類:與四邊形的對角線有關(guān)

      (5)對角線互相平分的四邊形是平行四邊形

      初中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)

      1.一次函數(shù)

      (1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)

      所以,正比例函數(shù)是特殊的一次函數(shù)。

      (2)一次函數(shù)的圖像及性質(zhì):

      1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

      2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

      3正比例函數(shù)的圖像總是過原點(diǎn)。

      4k,b與函數(shù)圖像所在象限的關(guān)系:

      當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。

      當(dāng)k>0,b>0時,直線通過一、二、三象限;

      當(dāng)k>0,b<0時,直線通過一、三、四象限;

      當(dāng)k<0,b>0時,直線通過一、二、四象限;

      當(dāng)k<0,b<0時,直線通過二、三、四象限;

      當(dāng)b=0時,直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

      這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

      2.二次函數(shù)

      (1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。

      (2)二次函數(shù)的三種表達(dá)式

      一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);

      頂點(diǎn)式:y=a(x-h)^2+k(拋物線的頂點(diǎn)P(h,k));

      交點(diǎn)式:

      (3)二次函數(shù)的圖像與性質(zhì)

      1二次函數(shù)的圖像是一條拋物線。

      2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

      特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)。

      3二次項系數(shù)a決定拋物線的開口方向。

      當(dāng)a>0時,拋物線向上開口;

      當(dāng)a<0時,拋物線向下開口。

      4一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

      當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

      當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

      5拋物線與x軸交點(diǎn)個數(shù)

      Δ=b^2-4ac>0時,拋物線與x軸有2個交點(diǎn);

      Δ=b^2-4ac=0時,拋物線與x軸有1個交點(diǎn);

      Δ=b^2-4ac<0時,拋物線與x軸沒有交點(diǎn)。

      3.反比例函數(shù)

      (1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

      (2)反比例函數(shù)圖像性質(zhì):

      1反比例函數(shù)的圖像為雙曲線;

      當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);

      當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù);

      反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

      2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱。

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)6

      動點(diǎn)與函數(shù)圖象問題常見的四種類型:

       1、三角形中的動點(diǎn)問題:動點(diǎn)沿三角形的邊運(yùn)動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      2、四邊形中的動點(diǎn)問題:動點(diǎn)沿四邊形的邊運(yùn)動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      3、圓中的動點(diǎn)問題:動點(diǎn)沿圓周運(yùn)動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      4、直線、雙曲線、拋物線中的動點(diǎn)問題:動點(diǎn)沿直線、雙曲線、拋物線運(yùn)動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

      圖形運(yùn)動與函數(shù)圖象問題常見的三種類型:

      1、線段與多邊形的運(yùn)動圖形問題:把一條線段沿一定方向運(yùn)動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

      2、多邊形與多邊形的運(yùn)動圖形問題:把一個三角形或四邊形沿一定方向運(yùn)動經(jīng)過另一個多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

      3、多邊形與圓的運(yùn)動圖形問題:把一個圓沿一定方向運(yùn)動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運(yùn)動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

      動點(diǎn)問題常見的四種類型:

      1、三角形中的動點(diǎn)問題:動點(diǎn)沿三角形的邊運(yùn)動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

      2、四邊形中的動點(diǎn)問題:動點(diǎn)沿四邊形的邊運(yùn)動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

      3、圓中的動點(diǎn)問題:動點(diǎn)沿圓周運(yùn)動,探究構(gòu)成的`新圖形的邊角等關(guān)系.

      4、直線、雙曲線、拋物線中的動點(diǎn)問題:動點(diǎn)沿直線、雙曲線、拋物線運(yùn)動,探究是否存在動點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.

      總結(jié)反思:

       本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

      解答動態(tài)性問題通常是對幾何圖形運(yùn)動過程有一個完整、清晰的認(rèn)識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

      解答函數(shù)的圖象問題一般遵循的步驟:

       1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段.

      2、求出每段的解析式.

      3、由每段的解析式確定每段圖象的形狀.

      對于用圖象描述分段函數(shù)的實(shí)際問題,要抓住以下幾點(diǎn):

      1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

      2、自變量變化函數(shù)值也變化的增減變化情況.

      3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)7

      一、函數(shù)及其相關(guān)概念

      1、變量與常量

      在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

      一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù)。

      2、函數(shù)解析式

      用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

      使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

      3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

      (1)解析法

      兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運(yùn)算符號的等式表示,這種表示法叫做解析法。

      (2)列表法

      把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

      (3)圖像法

      用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

      4、由函數(shù)解析式畫其圖像的一般步驟

      (1)列表:列表給出自變量與函數(shù)的一些對應(yīng)值

      (2)描點(diǎn):以表中每對對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

      (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。

      二、相交線與平行線

      1、知識網(wǎng)絡(luò)結(jié)構(gòu)

      2、知識要點(diǎn)

      (1)在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

      (2)在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個公共點(diǎn),稱這兩條直線相交;如果兩條直線沒有公共點(diǎn),稱這兩條直線平行。

      (3)兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是

      鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,

      與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;+=180°。

      3、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。=; =。

      4、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,

      其中一條叫做另一條的.垂線。如圖2所示,當(dāng)=90°時,⊥。

      垂線的性質(zhì):

      性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

      性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

      性質(zhì)3:如圖2所示,當(dāng)a⊥b時,====90°。

      點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度叫點(diǎn)到直線的距離。

      5、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:

      在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。

      在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi)錯角。圖3中,共有對內(nèi)錯角:與是內(nèi)錯角;與是內(nèi)錯角。

      在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內(nèi)角。圖3中,共有對同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。

      三、實(shí)數(shù)

      1、實(shí)數(shù)的分類

      (1)按定義分類:

      (2)按性質(zhì)符號分類:

      注:0既不是正數(shù)也不是負(fù)數(shù).

      2、實(shí)數(shù)的相關(guān)概念

      (1)相反數(shù)

      ①代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.

      ②幾何意義:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個點(diǎn)表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱.

      ③互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

      (2)絕對值|a|≥0.

      (3)倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù).

      (4)平方根

      ①如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a≥0)的平方根記作.

      ②一個正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.

      (5)立方根

      如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零.

      3、實(shí)數(shù)與數(shù)軸

      數(shù)軸定義:規(guī)定了原點(diǎn),正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

      4、實(shí)數(shù)大小的比較

      (1)對于數(shù)軸上的任意兩個點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.

      (2)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負(fù)數(shù);絕對值大的反而小.

      (3)無理數(shù)的比較大小:

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)8

      定義

      對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

      比值與比的概念

      比值是一個具體的數(shù)字如:AB/EF=2

      而比不是一個具體的數(shù)字如:AB/EF=2:1判定方法

      證兩個相似三角形應(yīng)該把表示對應(yīng)頂點(diǎn)的字母寫在對應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應(yīng)頂點(diǎn)可能沒有寫在對應(yīng)的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個三角形的對應(yīng)頂點(diǎn)寫在了對應(yīng)的位置上。

      方法一(預(yù)備定理)

      平行于三角形一邊的.直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個引理的證明方法需要平行線與線段成比例的證明)

      方法二

      如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。

      方法三

      如果兩個三角形的兩組對應(yīng)邊成比例,并且相應(yīng)的夾角相等,

      那么這兩個三角形相似

      方法四

      如果兩個三角形的三組對應(yīng)邊成比例,那么這兩個三角形相似

      方法五(定義)

      對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

      三個基本型

      Z型A型反A型

      方法六

      兩個直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。一定相似的三角形

      1、兩個全等的三角形

      (全等三角形是特殊的相似三角形,相似比為1:1)

      2、兩個等腰三角形

      (兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)

      3、兩個等邊三角形

      (兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)

      4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)

      圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)9

      1、重心的定義:平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。

      2、幾種幾何圖形的重心:

      ⑴ 線段的重心就是線段的中點(diǎn);

      ⑵ 平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點(diǎn);

      ⑶ 三角形的三條中線交于一點(diǎn),這一點(diǎn)就是三角形的重心;

      ⑷ 任意多邊形都有重心,以多邊形的任意兩個頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時,過這兩點(diǎn)鉛垂線的交點(diǎn)就是這個多邊形的重心。

      提示:⑴ 無論幾何圖形的形狀如何,重心都有且只有一個;

      ⑵ 從物理學(xué)角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的.力矩相同。

      3、常見圖形重心的性質(zhì):

      ⑴ 線段的重心把線段分為兩等份;

      ⑵ 平行四邊形的重心把對角線分為兩等份;

      ⑶ 三角形的重心把中線分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對邊中點(diǎn)距離占1份)。

      上面對重心知識點(diǎn)的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識。

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)10

      一、數(shù)與代數(shù)

      a、數(shù)與式:

      1、有理數(shù):

      ①整數(shù)→正整數(shù)/0/負(fù)整數(shù)

      ②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

      數(shù)軸:

      ①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。

      ②任何一個有理數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示。

      ③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

      ④數(shù)軸上兩個點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

      絕對值:

      ①在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對值。

      ②正數(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負(fù)數(shù)比較大小,絕對值大的反而小。

      有理數(shù)的運(yùn)算:加法:

      ①同號相加,取相同的符號,把絕對值相加。

      ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的.絕對值。

      ③一個數(shù)與0相加不變。

      減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

      乘法:

      ①兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

      ②任何數(shù)與0相乘得0。

      ③乘積為1的兩個有理數(shù)互為倒數(shù)。

      除法:

      ①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

      ②0不能作除數(shù)。

      乘方:求n個相同因數(shù)a的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。

      混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

      2、實(shí)數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

      平方根:

      ①如果一個正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術(shù)平方根。

      ②如果一個數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根。

      ③一個正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

      ④求一個數(shù)a的平方根運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。

      立方根:

      ①如果一個數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根。

      ②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

      ③求一個數(shù)a的立方根的運(yùn)算叫開立方,其中a叫做被開方數(shù)。

      實(shí)數(shù):

      ①實(shí)數(shù)分有理數(shù)和無理數(shù)。

      ②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。

      ③每一個實(shí)數(shù)都可以在數(shù)軸上的一個點(diǎn)來表示。

      3、代數(shù)式

      代數(shù)式:單獨(dú)一個數(shù)或者一個字母也是代數(shù)式。

      合并同類項:

      ①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。

      ②把同類項合并成一項就叫做合并同類項。

      ③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

      4、整式與分式

      整式:

      ①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

      ②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

      ③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

      整式運(yùn)算:加減運(yùn)算時,如果遇到括號先去括號,再合并同類項。

      冪的運(yùn)算:am+an=a(m+n)

      (am)n=amn

      (a/b)n=an/bn 除法一樣。

      整式的乘法:

      ①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

      ②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

      ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

      公式兩條:平方差公式/完全平方公式

      整式的除法:

      ①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

      ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

      分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

      方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

      分式:

      ①整式a除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

      ②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

      初中數(shù)學(xué)知識點(diǎn):直線的位置與常數(shù)的關(guān)系

      ①k>0則直線的傾斜角為銳角

      ②k<0則直線的傾斜角為鈍角

      ③圖像越陡,|k|越大

      ④b>0直線與y軸的交點(diǎn)在x軸的上方

      ⑤b<0直線與y軸的交點(diǎn)在x軸的下方

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)11

      三角形的知識點(diǎn)

      1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

      2、三角形的分類

      3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

      4、高:從三角形的一個頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

      5、中線:在三角形中,連接一個頂點(diǎn)和它的對邊中點(diǎn)的線段叫做三角形的中線。

      6、角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

      7、高線、中線、角平分線的意義和做法

      8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

      9、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

      推論1直角三角形的兩個銳角互余

      推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和

      推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

      10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

      11、三角形外角的性質(zhì)

      (1)頂點(diǎn)是三角形的一個頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

      (2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;

      (3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;

      (4)三角形的外角和是360°。

      四邊形(含多邊形)知識點(diǎn)、概念總結(jié)

      一、平行四邊形的定義、性質(zhì)及判定

      1、兩組對邊平行的四邊形是平行四邊形。

      2、性質(zhì):

      (1)平行四邊形的對邊相等且平行

      (2)平行四邊形的對角相等,鄰角互補(bǔ)

      (3)平行四邊形的對角線互相平分

      3、判定:

      (1)兩組對邊分別平行的四邊形是平行四邊形

      (2)兩組對邊分別相等的四邊形是平行四邊形

      (3)一組對邊平行且相等的四邊形是平行四邊形

      (4)兩組對角分別相等的四邊形是平行四邊形

      (5)對角線互相平分的四邊形是平行四邊形

      4、對稱性:平行四邊形是中心對稱圖形

      二、矩形的定義、性質(zhì)及判定

      1、定義:有一個角是直角的平行四邊形叫做矩形

      2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等

      3、判定:

      (1)有一個角是直角的平行四邊形叫做矩形

      (2)有三個角是直角的四邊形是矩形

      (3)兩條對角線相等的平行四邊形是矩形

      4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

      三、菱形的定義、性質(zhì)及判定

      1、定義:有一組鄰邊相等的平行四邊形叫做菱形

      (1)菱形的四條邊都相等

      (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

      (3)菱形被兩條對角線分成四個全等的直角三角形

      (4)菱形的面積等于兩條對角線長的積的一半

      2、s菱=爭6(n、6分別為對角線長)

      3、判定:

      (1)有一組鄰邊相等的平行四邊形叫做菱形

      (2)四條邊都相等的四邊形是菱形

      (3)對角線互相垂直的平行四邊形是菱形

      4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

      四、正方形定義、性質(zhì)及判定

      1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

      2、性質(zhì):

      (1)正方形四個角都是直角,四條邊都相等

      (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

      (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

      (4)正方形的對角線與邊的夾角是45°

      (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

      3、判定:

      (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

      (2)先判定一個四邊形是菱形,再判定出有一個角是直角

      4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

      五、梯形的定義、等腰梯形的性質(zhì)及判定

      1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

      2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

      3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

      4、對稱性:等腰梯形是軸對稱圖形

      六、三角形的中位線平行于三角形的第三邊并等于第三邊的.一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

      七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對角線的交點(diǎn);三角形的重心是三條中線的交點(diǎn)。

      八、依次連接任意一個四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。

      九、多邊形

      1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

      2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

      3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

      4、多邊形的對角線:連接多邊形不相鄰的兩個頂點(diǎn)的線段,叫做多邊形的對角線。

      5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

      6、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。

      7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

      8、公式與性質(zhì)

      多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

      9、多邊形外角和定理:

      (1)n邊形外角和等于n·180°-(n-2)·180°=360°

      (2)邊形的每個內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°

      10、多邊形對角線的條數(shù):

      (1)從n邊形的一個頂點(diǎn)出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

      (2)n邊形共有n(n-3)/2條對角線

      圓知識點(diǎn)、概念總結(jié)

      1、不在同一直線上的三點(diǎn)確定一個圓。

      2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

      ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

      ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

      推論2圓的兩條平行弦所夾的弧相等

      3、圓是以圓心為對稱中心的中心對稱圖形

      4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

      5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

      6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

      7、同圓或等圓的半徑相等

      8、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

      9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

      10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

      11、定理:圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

      12、①直線L和⊙O相交d

      ②直線L和⊙O相切d=r

      ③直線L和⊙O相離d>r

      13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

      14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑

      15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

      16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

      17、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

      18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

      19、如果兩個圓相切,那么切點(diǎn)一定在連心線上

      20、①兩圓外離d>R+r

      ②兩圓外切d=R+r

      ③兩圓相交R-rr)

      ④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

      21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

      22、定理:把圓分成n(n≥3):

      (1)依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形

      (2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形

      23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

      24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

      25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

      26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

      27、正三角形面積√3a/4a表示邊長

      28、如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

      29、弧長計算公式:L=n兀R/180

      30、扇形面積公式:S扇形=n兀R^2/360=LR/2

      31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

      32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

      33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

      34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

      35、弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)12

      第一章 豐富的圖形世界

      1、幾何圖形

      從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。

      2、點(diǎn)、線、面、體

      (1)幾何圖形的組成

      點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。

      線:面和面相交的地方是線,分為直線和曲線。

      面:包圍著體的是面,分為平面和曲面。

      體:幾何體也簡稱體。

      (2)點(diǎn)動成線,線動成面,面動成體。

      3、生活中的立體圖形

      生活中的立體圖形

      柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……

      正有理數(shù) 整數(shù)

      有理數(shù) 零 有理數(shù)

      負(fù)有理數(shù) 分?jǐn)?shù)

      2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零

      3、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示。

      4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

      5、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

      正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。互為相反數(shù)的兩個數(shù)的絕對值相等。

      6、有理數(shù)比較大小:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。

      7、有理數(shù)的運(yùn)算:

      (1)五種運(yùn)算:加、減、乘、除、乘方

      多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。

      有理數(shù)加法法則:

      同號兩數(shù)相加,取相同的符號,并把絕對值相加。

      異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。

      一個數(shù)同0相加,仍得這個數(shù)。

      互為相反數(shù)的兩個數(shù)相加和為0。

      有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)!

      有理數(shù)乘法法則:

      兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

      任何數(shù)與0相乘,積仍為0。

      有理數(shù)除法法則:

      兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。

      0除以任何非0的數(shù)都得0。

      注意:0不能作除數(shù)。

      有理數(shù)的乘方:求n個相同因數(shù)a的積的運(yùn)算叫做乘方。

      正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。

      (2)有理數(shù)的運(yùn)算順序

      先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

      (3)運(yùn)算律

      加法交換律 加法結(jié)合律

      乘法交換律 乘法結(jié)合律

      乘法對加法的分配律

      8、科學(xué)記數(shù)法

      一般地,一個大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)-1)

      第三章 整式及其加減

      1、代數(shù)式

      用運(yùn)算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個數(shù)或一個字母也是代數(shù)式。

      注意:①代數(shù)式中除了含有數(shù)、字母和運(yùn)算符號外,還可以有括號;

      ②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;

      ③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。

      ※代數(shù)式的書寫格式:

      ①代數(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;

      ②數(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;

      ③帶分?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作;

      ④數(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;

      ⑤在代數(shù)式中出現(xiàn)除法運(yùn)算時,一般寫成分?jǐn)?shù)的形式,如4÷(a-4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。

      ⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。

      2、整式:單項式和多項式統(tǒng)稱為整式。

      ①單項式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。

      注意:1.單獨(dú)的一個數(shù)或一個字母也是單項式;2.單獨(dú)一個非零數(shù)的次數(shù)是0;3.當(dāng)單項式的系數(shù)為1或-1時,這個“1”應(yīng)省略不寫,如-ab的系數(shù)是-1,a3b的系數(shù)是1。

      ②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。

      3、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

      注意:①同類項有兩個條件:a.所含字母相同;b.相同字母的指數(shù)也相同。

      ②同類項與系數(shù)無關(guān),與字母的排列順序無關(guān);

      ③幾個常數(shù)項也是同類項。

      4、合并同類項法則:把同類項的'系數(shù)相加,字母和字母的指數(shù)不變。

      5、去括號法則

      ①根據(jù)去括號法則去括號:

      括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。

      ②根據(jù)分配律去括號:

      括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據(jù)乘法的分配律用+1或-1去乘括號里的每一項以達(dá)到去括號的目的。

      6、添括號法則

      添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。

      7、整式的運(yùn)算:

      整式的加減法:(1)去括號;(2)合并同類項。

      第四章 基本平面圖形

      2、直線的性質(zhì)

      (1)直線公理:經(jīng)過兩個點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。)

      (2)過一點(diǎn)的直線有無數(shù)條。

      (3)直線是是向兩方面無限延伸的,無端點(diǎn),不可度量,不能比較大小。

      3、線段的性質(zhì)

      (1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。)

      (2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。

      (3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。

      4、線段的中點(diǎn):

      點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。

      5、角:

      有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個角的頂點(diǎn),這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。

      6、角的表示

      角的表示方法有以下四種:

      ①用數(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。

      ②用小寫的希臘字母表示單獨(dú)的一個角,如∠α,∠β,∠γ,∠θ等。

      ③用一個大寫英文字母表示一個獨(dú)立(在一個頂點(diǎn)處只有一個角)的角,如∠B,∠C等。

      ④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

      注意:用三個大寫字母表示角時,一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。

      7、角的度量

      角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

      把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

      把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

      1°=60’,1’=60”

      8、角的平分線

      從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

      9、角的性質(zhì)

      (1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。

      (2)角的大小可以度量,可以比較,角可以參與運(yùn)算。

      10、平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。

      11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點(diǎn)的線段叫做多邊形的對角線。

      從一個n邊形的同一個頂點(diǎn)出發(fā),分別連接這個頂點(diǎn)與其余各頂點(diǎn),可以畫(n-3)條對角線,把這個n邊形分割成(n-2)個三角形。

      12、圓:平面上,一條線段繞著一個端點(diǎn)旋轉(zhuǎn)一周,另一個端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。

      圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。

      第五章 一元一次方程

      1、方程

      含有未知數(shù)的等式叫做方程。

      2、方程的解

      能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

      3、等式的性質(zhì)

      (1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。

      (2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。

      4、一元一次方程

      只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。

      5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.

      6、解一元一次方程的一般步驟:

      (1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1

      第六章 數(shù)據(jù)的收集與整理

      1、普查與抽樣調(diào)查

      為了特定目的對全部考察對象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。

      從總體中抽取部分個體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。

      2、扇形統(tǒng)計圖

      扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)

      圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)

      3、頻數(shù)直方圖

      頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。

      4、各種統(tǒng)計圖的特點(diǎn)

      條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。

      折線統(tǒng)計圖:能清楚地反映事物的變化情況。

      扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)13

      一、角的定義

      “靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。

      “動態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

      如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

      二、角的換算:1周角=2平角=4直角=360°;

      1平角=2直角=180°;

      1直角=90°;

      1度=60分=3600秒(即:1°=60′=3600″);

      1分=60秒(即:1′=60″).

      三、余角、補(bǔ)角的概念和性質(zhì):

      概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補(bǔ)角。

      如果兩個角的和是一個直角,那么這兩個角叫做互為余角。

      說明:互補(bǔ)、互余是指兩個角的數(shù)量關(guān)系,沒有位置關(guān)系。

      性質(zhì):同角(或等角)的余角相等;

      同角(或等角)的補(bǔ)角相等。

      四、角的比較方法:

      角的大小比較,有兩種方法:

      (1)度量法(利用量角器);

      (2)疊合法(利用圓規(guī)和直尺)。

      五、角平分線:從一個角的頂點(diǎn)引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。

      常見考法

      (1)考查與時鐘有關(guān)的'問題;(2)角的計算與度量。

      誤區(qū)提醒

      角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時易受10進(jìn)制影響而出錯。

      【典型例題】(20xx云南曲靖)從3時到6時,鐘表的時針旋轉(zhuǎn)角的度數(shù)是( )

      【答案】3時到6時,時針旋轉(zhuǎn)的是一個周角的1/4,故是90度 ,本題選C.

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)14

      初中數(shù)學(xué)知識點(diǎn)總結(jié):中位線

      知識要點(diǎn):梯形的中位線平行于兩底,并且等于兩底和的一半。

      1.中位線概念

      (1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

      (2)梯形中位線定義:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形的中位線。

      注意:

      (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點(diǎn)和它對邊的中點(diǎn),而三角形中位線是連結(jié)三角形兩邊中點(diǎn)的線段。

      (2)梯形的中位線是連結(jié)兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。

      (3)兩個中位線定義間的聯(lián)系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。

      2.中位線定理

      (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

      三角形兩邊中點(diǎn)的連線(中位線)平行于第BC邊,且等于第三邊的一半。

      知識要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。

      初中數(shù)學(xué)知識點(diǎn)總結(jié):平面直角坐標(biāo)系

      下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

      平面直角坐標(biāo)系

      平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

      水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

      平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

      三個規(guī)定:

      ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

      ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時也可不同,但同一數(shù)軸上必須相同。

      ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

      相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

      初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成

      對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

      平面直角坐標(biāo)系的構(gòu)成

      在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

      通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

      初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

      下面是對數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

      點(diǎn)的坐標(biāo)的性質(zhì)

      建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。

      對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。

      一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

      希望上面對點(diǎn)的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的.掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

      初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟

      關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

      因式分解的一般步驟

      如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運(yùn)用公式法;若是四項或四項以上的多項式,

      通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

      注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

      相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

      初中數(shù)學(xué)知識點(diǎn):因式分解

      下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

      因式分解

      因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

      因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

      因式分解與整式乘法的關(guān)系:m(a+b+c)

      公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

      公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

      提取公因式步驟:

      ①確定公因式。②確定商式③公因式與商式寫成積的形式。

      分解因式注意;

      ①不準(zhǔn)丟字母

      ②不準(zhǔn)丟常數(shù)項注意查項數(shù)

      ③雙重括號化成單括號

      ④結(jié)果按數(shù)單字母單項式多項式順序排列

      ⑤相同因式寫成冪的形式

      ⑥首項負(fù)號放括號外

      ⑦括號內(nèi)同類項合并。

      通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

    人教版初中數(shù)學(xué)知識點(diǎn)總結(jié)(精華)15

      1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

      2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

      3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1 ……(檢驗(yàn)方程的解)。

      4.列一元一次方程解應(yīng)用題:

      (1)讀題分析法:多用于“和,差,倍,分問題”

      仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

      (2)畫圖分析法:多用于“行程問題”

      利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的`依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

      11.列方程解應(yīng)用題的常用公式:

      (1)行程問題:距離=速度·時間;

      (2)工程問題:工作量=工效·工時;

      (3)比率問題:部分=全體·比率;

      (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

      (5)商品價格問題:售價=定價·折·,利潤=售價—成本,;

      (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

      S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

      本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動和合作交流,讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,提升能力,體會數(shù)學(xué)思想方法。

    【初中數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

    初中數(shù)學(xué)的知識點(diǎn)總結(jié)09-19

    初中數(shù)學(xué)的知識點(diǎn)總結(jié)03-11

    初中數(shù)學(xué)知識點(diǎn)總結(jié)10-24

    初中數(shù)學(xué)圓的知識點(diǎn)總結(jié)06-07

    初中數(shù)學(xué)函數(shù)知識點(diǎn)總結(jié)04-08

    初中數(shù)學(xué)幾何知識點(diǎn)總結(jié)03-01

    初中數(shù)學(xué)的知識點(diǎn)總結(jié)大全12-09

    初中數(shù)學(xué)知識點(diǎn)總結(jié)03-07

    初中數(shù)學(xué)圓知識點(diǎn)總結(jié)10-17

    初中數(shù)學(xué)知識點(diǎn)總結(jié)06-24

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      中文字幕久久精品一二三区 | 久99中文在线视频 | 亚洲第一天堂久久 | 午夜天堂AV免费在线观看 | 亚洲国产午夜久久久久 | 制服亚洲中文字幕 |