初一數學教案

    時間:2023-01-21 17:15:11 數學教案 我要投稿

    初一數學教案匯編15篇

      作為一位優秀的人民教師,很有必要精心設計一份教案,教案是實施教學的主要依據,有著至關重要的作用。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的初一數學教案,僅供參考,希望能夠幫助到大家。

    初一數學教案匯編15篇

    初一數學教案1

      教學目的

      借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。

      重點、難點

      1.重點:列一元一次方程解決有關行程問題。

      2.難點:間接設未知數。

      教學過程

      一、復習

      1.列一元一次方程解應用題的'一般步驟和方法是什么?

      2.行程問題中的基本數量關系是什么?

      路程=速度×時間速度=路程/時間

      二、新授

      例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉看望爺爺,在行駛了三分之一路程后,估計繼續乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠?

      畫“線段圖”分析,若直接設元,設小張家到火車站的路程為x千米。

      1.坐公共汽車行了多少路程?乘的士行了多少路程?

      2.乘公共汽車用了多少時間,乘出租車用了多少時間?

      3.如果都乘公共汽車到火車站要多少時間?

      4,等量關系是什么?

      如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。

      可設公共汽車從小張家到火車站要x小時。

      設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。

      三、鞏固練習

      教科書第17頁練習1、2。

      四、小結

      有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。

      四、作業

      教科書習題6.3.2,第1至5題。

    初一數學教案2

      教學目標:了解總體、個體、樣本及樣本容的概念以及抽樣調查的意義,明確在什么情況下采用抽樣調查或全面調查,進一步熟悉對數據的收集、整理、描述和分析。

      教學重點:對概念的理解及對數據收集整理。

      教學難點:總體概念的理解和隨機抽樣的合理性。

      教學過程:

      一、情景創設,引入新課

      上節課我們對全班同學對自己所喜愛的學科進行了調查,那么如果要對某校20xx名學生對新聞、體育、動畫、娛樂、戲曲五類電視節目的喜愛情況,怎樣進行調查?

      二、新課

      1.抽樣調查的意義

      在上述問題中,由于學生人數比較多,全面調查花費的時間長,消耗的人力、物力大,因此需要尋求既省時又省力又能解決問題的方法,這就是抽樣調查。

      抽樣調查:抽取一部分對象進行調查的方法,叫抽樣調查。

      2.總體、個體、樣本、樣本容量的意義

      總體:所要考察對象的全體。

      個體:總體的每一個考察對象叫個體。

      樣本:抽取的部分個體叫做一個樣本。

      樣本容量:樣本中個體的數目。

      3.抽樣的注意事項

      ①抽樣調查要具有廣泛性和代表性,即樣本容量要恰當.樣本容量過少,那么不能很好地反映總體的情況,比如要調查20xx名學生對電視節目的喜愛情況,若抽取的樣本容量為幾名學生就不能反映20xx名學生的喜愛情況;如果抽取的學生人數過多,必然花費大量的時間、精力,達不到省時省力的.目的.再如要調查60歲以上的老人的生病情況,在醫院去抽取一些60歲以上的住院病人,它又不具有代表性,則應從60歲以上的老人冊中任意抽取部分老人的生病情況來反映總體的60歲老人的生病情況,才能達到目的.

     、诔槿〉臉颖疽须S機性.為了使樣本能較好地反映總體的情況,除了有合適的樣本容量外,抽取時還要盡量使每一個個體都有相等的機會被抽到,所謂隨機就是機會相等.例如在20xx名學生的注冊學號中,隨意抽取100個學號,調查這些學號對應的100名學生.當然還可以在上學或放學時,在學校門口隨機進行調查;或則每隔10個人調查一個,直到調查滿確定的樣本容量.

      總體說來抽樣調查最大的優點就是在抽樣過程中避免了人為的干擾和偏差,因此隨機抽樣是最科學、應用最廣泛的抽樣方法,一般情況下,樣本容量越大,估計精確度就越高.

      下面是某同學抽取樣本數量為100的調查節目統計表:

      表中的數據信息也可以用條形統計圖或扇形統計圖來描述。

    初一數學教案3

      初一上冊數學教案,歡迎各位老師和學生參考!

      學習目標:1、理解有理數的絕對值和相反數的意義。

      2、會求已知數的相反數和絕對值。

      3、會用絕對值比較兩個負數的大小。

      4、經歷將實際問題數學化的過程,感受數學與生活的聯系。

      學習重點:1.會用絕對值比較兩個負數的大小。

      2.會求已知數的相反數和絕對值。

      學習難點:理解有理數的.絕對值和相反數的意義。

      學習過程:

      一、創設情境

      根據絕對值與相反數的意義填空:

      1、

      2、

      -5的相反數是______,-10.5的相反數是______, 的相反數是______;

      3、|0|=______,0的相反數是______。

      二、探索感悟

      1、議一議

      (1)任意說出一個數,說出它的絕對值、它的相反數。

      (2)一個數的絕對值與這個數本身或它的相反數有什么關系?

      2、想一想

      (1)2與3哪個大?這兩個數的絕對值哪個大?

      (2)-1與-4哪個大?這兩個數的絕對值哪個大?

      (3)任意寫出兩個負數,并說出這兩個負數哪個大?他們的絕對值哪個大?

      (4)兩個有理數的大小與這兩個數的絕對值的大小有什么關系?

      三.例題精講

      例1. 求下列各數的絕對值:

      +9,-16,-0.2,0.

      求一個數的絕對值,首先要分清這個數是正數、負數還是0,然后才能正確地寫出它的絕對值。

      議一議:(1)兩個數比較大小,絕對值大的那個數一定大嗎?

      (2)數軸上的點的大小是如何排列的?

      例2比較-10.12與-5.2的大小。

      例3.求6、-6、14 、-14 的絕對值。

      小節與思考:

      這節課你有何收獲?

      四.練習

      1. 填空:

      ⑴ 的符號是 ,絕對值是 ;

     、10.5的符號是 ,絕對值是

      ⑶符號是+號,絕對值是 的數是

      ⑷符號是-號,絕對值是9的數是 ;

     、煞柺-號,絕對值是0.37的數是 .

      2. 正式足球比賽時所用足球的質量有嚴格的規定,下表是6個足球的質量檢測結果(用正數記超過規定質量的克數,用負數記不足規定質量的克數).

      請指出哪個足球質量最好,為什么?

      第1個第2個第3個第4個第5個第6個

      -25-10+20+30+15-40

      3.比較下面有理數的大小

      (1)-0.7與-1.7 (2) (3) (4)-5與0

      五、布置作業:

      P25 習題2.3 5

      家庭作業:《評價手冊》 《補充習題》

      六、學后記/教后記

      這篇初一上冊數學教案就為大家分享到這里了。希望對大家有所幫助!

    初一數學教案4

      一、學習與導學目標:

      知識與技能:借助數軸理解相反數的意義,懂得數軸上表示相反數的兩個點關于原點對稱,會求有理數的相反數;

      過程與方法:經歷概念的生成、應用,體會相反數的意義,簡化數的符號,學習觀察、歸納、概括的策略與方法;

      情感態度:通過師生、生生合作學習,促進交流,激發興趣。

      二、學程與導程活動:

      A、準備活動:

      1、師生游戲“唱反調”:我們知道在小學學過的0以外的數前面加上負號“-”的數就是負數,F在我說一個正數,你們給它添上“-”號說出來,我如果說一個負數,你們反過來說出對應的正數。+3、+1、-1/2、-18.4、0.75,學生很快說出-3、-1、1/2、18.4、-0.175。

      2、上述“唱反調”的兩個數3與-3,1與-1,-1/2與1/2……,在數軸上對應的點的位置如何?可建議生擇兩組在數軸上表示以后作答(在原點兩側到原點的距離相等,真可謂從原點背道而馳“唱反調”)。

      提問:數軸上與原點距離是4的點有幾個?這些點表示的'數是多少?

      歸納:設a是一個正數,數軸上與原點距離是a的點有兩個,分別在原點左右表示-a和a,我們說這兩點關于原點對稱。

      B、學習概念:

      1、像3和-3,1和-1,-1/2和1/2這樣,只有負號不同的兩個數給它一個什么樣的關系名稱合適呢?生:互為相反數,師:很好,我們把上述只有負號不同的兩個數叫做互為相反數(oppositenumber)。也就是說3的相反數是-3,-3的相反數是3?梢姡合喾磾凳浅蓪Τ霈F的,不能單獨存在。

      一般地,a和-a互為相反數。“-a”可讀成“a的相反數”。

      2、在數軸上看,表示相反數的兩個點和原點有什么關系?(關于原點對稱)

      3、從上述意義上看,你看如何規定0的相反數更為合理?

      商討得:0的相反數仍是0,即0的相反數等于它本身。

      C、應用舉例:

      1、兩人一組,一人任說一個有理數,請同伴說出它的相反數。

      2、如果a=-a,那么表示數a的點在數軸上的什么位置?a=?(a=0)。

      3、在正數前面添上“-”號,就得到這個數的相反數,同樣地,在任意一個數前面添上“-”號,新的數就表示原數的相反數,如:-(+5)=-5,-(-5)=5,-0=0。

      結合前面相反數意義的量的學習,還可賦予-(-5)怎樣的意義,從而幫助自己理解-(-5)=5嗎?

      4、化簡下列各數P124練習,你愿意繼續嘗試化簡下列各式嗎?

      +(-2/3),-(-2/3),-(+2/3),+(+2/3)

      你能試著總結規律嗎?(括號內外同號結果為正,括號內外異號結果為負)。

      5、若a=-5,則-a=;若-x=7,則x=。

      三、筆記與板書提綱:

      課題應用舉例中的2

      活動引例應用舉例中的4(學生練習),5

      概念

      四、練習與拓展選題:

      1、教科書P18/3;

      2、如圖是正方形紙盒的側面展示圖,請你在正方形內分別填上6個不同的數,使折成正方體后相對的面上的兩個數互為相反數(寫出滿足條件的一種情形即可)。

    初一數學教案5

      教學目標

      (一)教學知識點

      1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.

      2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.

      3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.

      (二)能力訓練要求

      1.經歷探索二次函數與一元二次方程的關系的過程,培養學生的探索能力和創新精神.

      2.通過觀察二次函數圖象與x軸的交點個數,討論一元二次方程的根的情況,進一步培養學生的數形結合思想.

      3.通過學生共同觀察和討論,培養大家的合作交流意識.

      (三)情感與價值觀要求

      1.經歷探索二次函數與一元二次方程的關系的過程,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性.

      2.具有初步的創新精神和實踐能力.

      教學重點

      1.體會方程與函數之間的聯系.

      2.理解何時方程有兩個不等的實根,兩個相等的實數和沒有實根.

      3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.

      教學難點

      1.探索方程與函數之間的聯系的過程.

      2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系.

      教學方法

      討論探索法.

      教具準備

      投影片二張

      第一張:(記作§2.8.1A)

      第二張:(記作§2.8.1B)

      教學過程

     、.創設問題情境,引入新課

      [師]我們學習了一元一次方程kx+b=0(k≠0)和一次函數y=kx+b(k≠0)后,討論了它們之間的關系.當一次函數中的函數值y=0時,一次函數y=kx+b就轉化成了一元一次方程kx+b=0,且一次函數y=kx+b(k≠0)的圖象與x軸交點的'橫坐標即為一元一次方程kx+b=0的解.

      現在我們學習了一元二次方程ax2+bx+c=0(a≠0)和二次函數y=ax2+bx+c(a≠0),它們之間是否也存在一定的關系呢?本節課我們將探索有關問題。

      通過學生的討論,使學生更清楚以下事實:

      (1)分解因式與整式的乘法是一種互逆關系;

      (2)分解因式的結果要以積的形式表示;

      (3)每個因式必須是整式,且每個因式的次數都必須低于原來的多項式的次數;

      (4)必須分解到每個多項式不能再分解為止。

      活動5:應用新知

      例題學習:

      P166例1、例2(略)

      在教師的引導下,學生應用提公因式法共同完成例題。

      讓學生進一步理解提公因式法進行因式分解。

      活動6:課堂練習

      1.P167練習;

      2.看誰連得準

      x2-y2 (x+1)2

      9-25 x 2 y(x -y)

      x 2+2x+1 (3-5 x)(3+5 x)

      xy-y2 (x+y)(x-y)

      3.下列哪些變形是因式分解,為什么?

      (1)(a+3)(a -3)= a 2-9

      (2)a 2-4=( a +2)( a -2)

      (3)a 2-b2+1=( a +b)( a -b)+1

      (4)2πR+2πr=2π(R+r)

      學生自主完成練習。

      通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。

      活動7:課堂小結

      從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?

      學生發言。

      通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數學思想的理解。

      活動8:課后作業

      課本P170習題的第1、4大題。

      學生自主完成

      通過作業的鞏固對因式分解,特別是提公因式法理解并學會應用。

      板書設計(需要一直留在黑板上主板書)

      15.4.1提公因式法例題

      1.因式分解的定義

      2.提公因式法

    初一數學教案6

      一、教學目標

      1.通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關內容的認識,積累數學活動經驗。

      2.能用適當的圖形和語言表示自己的思考結果。

      二、教學重點和難點

      本堂內容的重點是七巧板的制作和拼擺,難點是拼圖所要表現的幾何圖形,對已學過的平行,垂直及角等有關內容的有機聯系和語言表達。

      三、教學手段

      引導活動討論

      引導:意在教師講解七巧板的歷史,七巧板制作的方法。

      活動:人人參與制作七巧板,拼擺七巧板的圖案。

      討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。

      四、教學方法

      啟發式教學

      五、教學過程

      1 創設情景,引入新課

      先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。

      2 合作交流,探索新知

      利用所做的七巧板拼出兩個不同的'圖案,并與同伴交流,與全班同學交流,與老師交流。

      (1) 你的拼圖用了什么形狀的板?你想表現什么?

      (2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關系表示出來。

      (3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。

      通過學生的展示,教師作適時的評價,樹立榜樣,培養學生之間的競爭意識。

      3 范例教學

      介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的圖案,激發學生的創造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發揮學生的創造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。

      4 反饋練習

      由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現的內容,與所學的知識的聯系,呈現平行,垂直及角的有關知識。

      5 歸納小結

      通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關內容的認識,積累數學活動的經驗,提高了空間觀念和觀察、分析、概括表達的能力。

      六、練習設計

      利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環境。

      七、板書設計

      4.7有趣的七巧板

      (一)知識回顧 (三)例題解析 (五)課堂小結

      (二)觀察發現 (四)課堂練習 練習設計

    初一數學教案7

      一、 學情分析:

      在此之前,本班學生已有探索有理數加法法則的經驗,多數學生能在教師指導下探索問題。由于學生已了解利用數軸表示加法運算過程,不太熟悉水位變化,故改為用數軸表示乘法運算過程。

      二、 課前準備

      把學生按組間同質、組內異質分為10個小組,以便組內合作學習、組間競爭學習,形成良好的學習氣氛。

      三、 教學目標

      1、 知識與技能目標

      掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。

      2、 能力與過程目標

      經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。

      3、 情感與態度目標

      通過學生自己探索出法則,讓學生獲得成功的喜悅。

      四、 教學重點、難點

      重點:運用有理數乘法法則正確進行計算。

      難點:有理數乘法法則的探索過程,符號法則及對法則的.理解。

      五、 教學過程

      1、 創設問題情景,激發學生的求知欲望,導入新課。

      教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?

      學生:26米。

      教師:能寫出算式嗎?

      學生:……

      教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題(教師板書課題)

      2、 小組探索、歸納法則

      (1)教師出示以下問題,學生以組為單位探索。

      以原點為起點,規定向東的方向為正方向,向西的方向為負方向。

      a. 2 ×3

      2看作向東運動2米,×3看作向原方向運動3次。

      結果:向 運動 米

      2 ×3=

      b. -2 ×3

      -2看作向西運動2米,×3看作向原方向運動3次。

      結果:向 運動 米

      -2 ×3=

      c. 2 ×(-3)

      2看作向東運動2米,×(-3)看作向反方向運動3次。

      結果:向 運動 米

      2 ×(-3)=

      d. (-2) ×(-3)

      -2看作向西運動2米,×(-3)看作向反方向運動3次。

      結果:向 運動 米

     。-2) ×(-3)=

      e.被乘數是零或乘數是零,結果是人仍在原處。

     。2)學生歸納法則

      a.符號:在上述4個式子中,我們只看符號,有什么規律?

      (+)×(+)= 同號得

      (-)×(+)= 異號得

     。+)×(-)= 異號得

     。-)×(-)= 同號得

      b.積的絕對值等于 。

      c.任何數與零相乘,積仍為 。

     。3)師生共同用文字敘述有理數乘法法則。

      3、 運用法則計算,鞏固法則。

      (1)教師按課本P75 例1板書,要求學生述說每一步理由。

      (2)引導學生觀察、分析例1中(3)(4)小題兩因數的關系,得出兩個有理數互為倒數,它們的積為 。

     。3)學生做 P76 練習1(1)(3),教師評析。

     。4)教師引導學生做P75 例2,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。多個因數相乘,積的符號由 決定,當負因數個數有 ,積為 ; 當負因數個數有 ,積為 ;只要有一個因數為零,積就為 。

      4、 討論對比,使學生知識系統化。


    有理數乘法有理數加法
    同號得正取相同的符號
    把絕對值相乘
    (-2)×(-3)=6
    把絕對值相加
    (-2)+(-3)=-5
    異號得負取絕對值大的加數的符號
    把絕對值相乘
    (-2)×3= -6
    (-2)+3=1
    用較大的絕對值減小的絕對值
    任何數與零得零得任何數

      5、 分層作業,鞏固提高。

    初一數學教案8

      教學目標

      1,整理前兩個學段學過的整數、分數(包括小數)的知識,掌握正數和負數的概念;

      2,能區分兩種不同意義的量,會用符號表示正數和負數;

      3,體驗數學發展的一個重要原因是生活實際的需要,激發學生學習數學的興趣。

      教學難點:正確區分兩種不同意義的量。

      知識重點:兩種相反意義的量

      教學過程:(師生活動)設計理念

      設置情境

      引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經學過的數,并由此請學生思考:生

      活中僅有這些“以前學過的數”夠用了嗎?下面的例子僅供參考.

      師:今天我們已經是七年級的學生了,我是你們的數學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數的37%…

      問題1:老師剛才的介紹中出現了幾個數?分別是什么?你能將這些數按以前學過的數的分類方法進行分類嗎?

      學生活動:思考,交流

      師:以前學過的數,實際上主要有兩大類,分別是整數和分數(包括小數).

      問題2:在生活中,僅有整數和分數夠用了嗎?

      請同學們看書(觀察本節前面的幾幅圖中用到了什么數,讓學生感受引入負數的必要性)并思考討論,然后進行交流。

      (也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)

      學生交流后,教師歸納:以前學過的數已經不夠用了,有時候需要一種前面帶有“-”的新數。先回顧小學里學過的數的類型,歸納出我們已經學了整數和分數,然后,舉一些實際生活有相反意義的量,說明為了表示相反意義的量,我們需要引入負數,這樣做強調了數學的嚴密性,但對于學生來說,更多

      地感到了數學的.枯燥乏味為了既復習小學里學過的數,又能激發學生的學習興

      趣,所以創設如下的問題情境,以盡量貼近學生的實際.

      這個問題能激發學生探究的欲望,學生自己看書學習是培養學生自主學習的重要途徑,都應予以重視。

      以上的情境和實例使學生體會生活中處處有數學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。

      分析問題

      探究新知問題3:前面帶有“一”號的新數我們應怎樣命名它呢?為什么要引人負數呢?通常在日常生活中我們用正數和負數分別表示怎樣的量呢?

      這些問題都必須要求學生理解.

      教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.

      這階段主要是讓學生學會正數和負數的表示.

      強調:用正,負數表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數量,而且是同類的量.這些問題是這節課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規范,要舍得花時間讓學充分發表想法。

      舉一反三思維拓展經過上面的討論交流,學生對為什么要引人負數,對怎樣用正數和負數表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數和負數概念的理解,并開拓思維.

      問題4:請同學們舉出用正數和負數表示的例子.

      問題5:你是怎樣理解“正整數”“負整數,,’’正分數”和“負分數”的呢?請舉例說明.

      能否舉出例子是學生對知識掌握程度的體現,也能進一步幫助學生理解引負數的必要性

      課堂練習教科書第5頁練習

      小結與作業

      課堂小結圍繞下面兩點,以師生共同交流的方式進行:

      1, 0由于實際問題中存在著相反意義的量,所以要引人負數,這樣數的范圍就擴大了;

      2,正數就是以前學過的0以外的數(或在其前面加“+”),負數就是在以前學過的0以外的數前面加“-”。

      本課作業教科書第7頁習題1.1 第1,2,4,5(第3題作為下節課的思考題。

      作業可設必做題和選 做題,體現要求的層次性,以滿足不同學生的需要

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      密切聯系生活實際,創設學習情境.本課是有理數的第一節課時.引人負數是數的范圍的一次重要擴充,學生頭腦中關于數的結構要做重大調整(其實是一次知識的順應過程),而負數相對于以前的數,對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數,就必須對原有的數的結構進行整理,引人幣的舉例就是這個目的.

      負數的產生主要是因為原有的數不夠用了(不能正確簡潔地表示數量),書本的例子或圖片中出現的負數就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(為了區分這兩種相反意義的量)就是順理成章的事了.

      這個教學設計突出了數學與實際生活的緊密聯系,使學生體會到數學的應用價值,

      體現了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。

    初一數學教案9

      教學目標

      1,通過對數“零”的意義的探討,進一步理解正數和負數的概念;

      2,利用正負數正確表示相反意義的量(規定了指定方向變化的量)

      3,進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。

      教學難點:深化對正負數概念的理解

      知識重點:正確理解和表示向指定方向變化的量

      教學過程:(師生活動)設計理念

      知識回顧與深化回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?

      問題1:有沒有一種既不是正數又不是負數的數呢?

      學生思考并討論

     。〝0既不是正數又不是負數,是正數和負數的分

      界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)

      例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的最高溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數和負數 .

      那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數

      問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類?“數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入

      負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。

      所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即可,不必深究.

      分析問題

      解決問題問題3:教科書第6頁例題

      說明:這是一個用正負數描述向指定方向變化情況的例子, 通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的.量。

      歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).

      類似的例子很多,如:

      水位上升-3m,實際表示什么意思呢?

      收人增加-10%,實際表示什么意思呢?

      可視教學中的實際情況進行補充.

      這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在不必向學生提出.

      鞏固練習教科書第6頁練習

      閱讀思考

      教科書第8頁閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流

      小結與作業

      課堂小結以問題的形式,要求學生思考交流:

      1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?

      2,怎樣用正負數表示具有相反意義的量?

     。ㄓ谜龜当硎酒渲幸环N意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)

      本課作業

      1,必做題:教科書第7頁習題1.1第3,6,7,8題

      2,選做題:教師自行安排

      本課教育評注(課堂設計理念,實際教學效果及改進設想)

      1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指定方向變化的量。

      2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.

      3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.

      4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.

    初一數學教案10

      學習目標:

      理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。

      學習重點:

      多項式乘法法則及其應用。

      學習難點:

      理解運算法則及其探索過程。

      一、課前訓練:

      (1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;

      (3)3a2b2 ab3 = , (4) = ;

      (5)- = ,(6) = 。

      二、探索練習:

      (1)如圖1大長方形,其面積用四個小長方形面積

      表示為: ;

      (2)大長方形的長為 ,寬為 ,要

      計算其面積就是 ,其中包含的

      運算為 。

      由上面的問題可發現:( )( )=

      多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的 以另一個多項式的每一項,再把所得的積 。

      三.運用法則規范解題。

      四.鞏固練習:

      3.計算:① ,

      4.計算:

      五.提高拓展練習:

      5.若 求m,n的`值.

      6.已知 的結果中不含 項和 項,求m,n的值.

      7.計算(a+b+c)(c+d+e),你有什么發現?

      六.晚間訓練:

      (7) 2a2(-a)4 + 2a45a2 (8)

      3、(1)觀察:4×6=24

      14×16=224

      24×26=624

      34×36=1224

      你發現其中的規律嗎?你能用代數式表示這一規律嗎?

      (2)利用(1)中的規律計算124×126。

      4、如圖,AB= ,P是線段AB上一點,分別以AP,BP為邊作正方形。

      (1)設AP= ,求兩個正方形的面積之和S;

      (2)當AP分別 時,比較S的大小。

    初一數學教案11

      教學目的

      讓學生通過獨立思考,積極探索,從而發現;初步體會數形結合思想的作用。

      重點、難點

      1.重點:通過分析圖形問題中的數量關系,建立方程解決問題。

      2.難點:找出“等量關系”列出方程。

      教學過程

      一、復習提問

      1.列一元一次方程解應用題的步驟是什么?

      2.長方形的周長公式、面積公式。

      二、新授

      問題3.用一根長60厘米的鐵絲圍成一個長方形。

      (1)使長方形的寬是長的專,求這個長方形的長和寬。

      (2)使長方形的寬比長少4厘米,求這個長方形的面積。

      (3)比較(1)、(2)所得兩個長方形面積的大小,還能圍出面積更大的長方形嗎?

      不是每道應用題都是直接設元,要認真分析題意,找出能表示整個題意的等量關系,再根據這個等量關系,確定如何設未知數。

      (3)當長方形的長為18厘米,寬為12厘米時

      長方形的面積=18×12=216(平方厘米)

      當長方形的`長為17厘米,寬為13厘米時

      長方形的面積=221(平方厘米)

      ∴(1)中的長方形面積比(2)中的長方形面積小。

      問:(1)、(2)中的長方形的長、寬是怎樣變化的?你發現了什么?如果把(2)中的寬比長少“4厘米”改為3厘米、2厘米、1厘米、0.5厘米長方形的面積有什么變化?猜想寬比長少多少時,長方形的面積呢?并加以驗證。

      實際上,如果兩個正數的和不變,當這兩個數相等時,它們的積,通過以后的學習,我們就會知道其中的道理。

      三、鞏固練習

      教科書第14頁練習1、2。

      第l題等量關系是:圓柱的體積=長方體的體積。

      第2題等量關系是:玻璃杯中的水的體積十瓶內剩下的水的體積=原來整瓶水的體積。

      四、小結

      運用方程解決問題的關鍵是抓住等量關系,有些等量關系是隱藏的,不明顯,要聯系實際,積極探索,找出等量關系。

      五、作業

      教科書第16頁,習題6.3.1第1、2、3。

    初一數學教案12

      多邊形及其內角和

      知識點一:多邊形的概念

      ⑴多邊形定義:在平面內,由一些線段首位順次相接組成的圖形叫做________.

      如果一個多邊形由n條線段組成,那么這個多邊形叫做____________.(一個多邊形由幾條線段組成,就叫做幾邊形.)

      多邊形的表示:用表示它的各頂點的大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序.如五邊形ABCDE.

     、贫噙呅蔚倪叀㈨旤c、內角和外角.

      多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________.

      ⑶多邊形的對角線

      連接多邊形的不相鄰的兩個頂點的線段,叫做___________________.畫一個五邊形ABCDE,并畫出所有的對角線.知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是______多邊形.

      知識點二:正多邊形

      各個角都相等,各條邊都相等的多邊形叫做_____________.

      探究多邊形的對角線條數

      知識點三:多邊形的內角和公式推導

      1、我們知道三角形的內角和為__________.

      2、我們還知道,正方形的四個角都等于____°,那么它的內角和為_____°,同樣長方形的內角和也是______°.

      3、正方形和長方形都是特殊的四邊形,其內角和為360度,那么一般的四邊形的內角和為多少呢?

      4、畫一個任意的四邊形,用量角器量出它的四個內角,計算它們的和,與同伴交流你的結果.從中你得到什么結論?

      探究1:任意畫一個四邊形,量出它的4個內角,計算它們的和.再畫幾個四邊形,?量一量、算一算.你能得出什么結論?能否利用三角形內角和等于180?°得出這個結論?結論:。

      探究2:從上面的問題,你能想出五邊形和六邊形的內角和各是多少嗎?觀察圖3,?請填空:

     。1)從五邊形的一個頂點出發,可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內角和等于180°×______.

      (2)從六邊形的一個頂點出發,可以引_____條對角線,

      它們將六邊形分為_____個三角形,六邊形的.內角和等于180°×______.探究3:一般地,怎樣求n邊形的內角和呢?請填空:

      從n邊形的一個頂點出發,可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內角和等于180°×______.

      綜上所述,你能得到多邊形內角和公式嗎?設多邊形的邊數為n,則

      n邊形的內角和等于______________.

      想一想:要得到多邊形的內角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形.除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內角和公式嗎?

      知識點四:多邊形的外角和

      探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和.六邊形的外角和等于多少?

      問題:如果將六邊形換為n邊形(n是大于等于3的整數),結果還相同嗎?多邊形的外角和定理:.理解與運用

      例1如果一個四邊形的一組對角互補,那么另一組對角有什么關系?已知:四邊形ABCD的∠A+∠C=180°.求:∠B與∠D的關系.

      自我檢測:

     。ㄒ唬、判斷題.

      1.當多邊形邊數增加時,它的內角和也隨著增加.()

      2.當多邊形邊數增加時.它的外角和也隨著增加.()

      3.三角形的外角和與一多邊形的外角和相等.()

      4.從n邊形一個頂點出發,可以引出(n一2)條對角線,得到(n一2)個三角形.()

      5.四邊形的四個內角至少有一個角不小于直角.()

      (二)、填空題.

      1.一個多邊形的每一個外角都等于30°,則這個多邊形為

      2.一個多邊形的每個內角都等于135°,則這個多邊形為

      3.內角和等于外角和的多邊形是邊形.

      4.內角和為1440°的多邊形是

      5.若多邊形內角和等于外角和的3倍,則這個多邊形是邊形.

      6.五邊形的對角線有

      7.一個多邊形的內角和為4320°,則它的邊數為

      8.多邊形每個內角都相等,內角和為720°,則它的每一個外角為

      9.四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠.

      10.四邊形的四個內角中,直角最多有個,鈍角最多有銳角最

     。ㄈ┙獯痤}

      1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?

      2、在每個內角都相等的多邊形中,若一個外角是它相鄰內角的則這個多邊形是幾邊形?

      3、若一個多邊形的內角和與外角和的比為7:2,求這個多邊形的邊數。

      4、一個多邊形的每一個內角都等于其相等外角的

      5.一個多邊形少一個內角的度數和為2300°.

     。1)求它的邊數;(2)求少的那個內角的度數.

    初一數學教案13

      教學目的

      通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。

      重點、難點

      1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。

      2.難點:找出能表示整個題意的等量關系。

      教學過程

      一、復習

      1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數

      本利和=本金×利息×年數+本金

      2.商品利潤等有關知識。

      利潤=售價-成本; =商品利潤率

      二、新授

      問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

      利息-利息稅=48.6

      可設小明爸爸前年存了x元,那么二年后共得利息為

      2.43%×X×2,利息稅為2.43%X×2×20%

      根據等量關系,得2.43%x·2-2.43%x×2×20%=48.6

      問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的.80%,因此可得

      2.43%x·2·80%=48.6

      解方程,得x=1250

      例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

      大家想一想這15元的利潤是怎么來的?

      標價的80%(即售價)-成本=15

      若設這種服裝每件的成本是x元,那么

      每件服裝的標價為:(1+40%)x

      每件服裝的實際售價為:(1+40%)x·80%

      每件服裝的利潤為:(1+40%)x·80%-x

      由等量關系,列出方程:

      (1+40%)x·80%-x=15

      解方程,得x=125

      答:每件服裝的成本是125元。

      三、鞏固練習

      教科書第15頁,練習1、2。

      四、小結

      當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。

      五、作業

      教科書第16頁,習題6.3.1,第4、5題。

    初一數學教案14

      學習目標

      1.理解平行線的意義兩條直線的兩種位置關系;

      2.理解并掌握平行公理及其推論的內容;

      3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;

      學習重點

      探索和掌握平行公理及其推論.

      學習難點

      對平行線本質屬性的理解,用幾何語言描述圖形的性質

      一、學習過程:預習提問

      兩條直線相交有幾個交點?

      平面內兩條直線的位置關系除相交外,還有哪些呢?

     。ㄒ唬┊嬈叫芯

      1、 工具:直尺、三角板

      2、 方法:一"落";二"靠";三"移";四"畫"。

      3、請你根據此方法練習畫平行線:

      已知:直線a,點B,點C.

      (1)過點B畫直線a的'平行線,能畫幾條?

      (2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

      (二)平行公理及推論

      1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

     、谶^點C畫直線a的平行線,能畫 條;

     、勰惝嫷闹本有什么位置關系? 。

      ②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

      二、自我檢測:

      (一)選擇題:

      1、下列推理正確的是 ( )

      A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

      C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

      2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )

      A.0個 B.1個 C.2個 D.3個

     。ǘ┨羁疹}:

      1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。

      2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:

     。1)L1與L2 沒有公共點,則 L1與L2 ;

     。2)L1與L2有且只有一個公共點,則L1與L2 ;

     。3)L1與L2有兩個公共點,則L1與L2 。

      3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

      4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。

      三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

    初一數學教案15

      教學目標

      1.使學生正確理解數軸的意義,掌握數軸的三要素;

      2.使學生學會由數軸上的已知點說出它所表示的數,能將有理數用數軸上的點表示出來;

      3.使學生初步理解數形結合的思想方法.

      教學重點和難點

      重點:初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數.

      難點:正確理解有理數與數軸上點的對應關系.

      課堂教學過程設計

      一、從學生原有認知結構提出問題

      1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

      2.用“射線”能不能表示有理數?為什么?

      3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

      待學生回答后,教師指出,這就是我們本節課所要學習的內容——數軸.

      二、講授新課

      讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

      與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

      1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

      2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

      3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

      提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

      在此基礎上,給出數軸的定義,即規定了原點、正方向和單位長度的直線叫做數軸.

      進而提問學生:在數軸上,已知一點P表示數-5,如果數軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

      通過上述提問,向學生指出:數軸的三要素——原點、正方向和單位長度,缺一不可.

      三、運用舉例變式練習

      例1畫一個數軸,并在數軸上畫出表示下列各數的點:

      例2指出數軸上A,B,C,D,E各點分別表示什么數.

      課堂練習

      示出來.

      2.說出下面數軸上A,B,C,D,O,M各點表示什么數?

      最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的.點表示,零用原點表示.

      四、小結

      指導學生閱讀教材后指出:數軸是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

      本節課要求同學們能掌握數軸的三要素,正確地畫出數軸,在此還要提醒同學們,所有的有理數都可用數軸上的點來表示,但是反過來不成立,即數軸上的點并不是都表示有理數,至于數軸上的哪些點不能表示有理數,這個問題以后再研究.

      五、作業

      1.在下面數軸上:

      (1)分別指出表示-2,3,-4,0,1各數的點.

      (2)A,H,D,E,O各點分別表示什么數?

      2.在下面數軸上,A,B,C,D各點分別表示什么數?

      3.下列各小題先分別畫出數軸,然后在數軸上畫出表示大括號內的一組數的點:

      (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

    【初一數學教案】相關文章:

    初一數學教案11-10

    初一數學教案12-17

    初一數學教案上冊09-26

    山東初一數學教案09-25

    初一數學教案:相交線06-12

    初一數學教案:相交線08-24

    初一數學教案(15篇)01-08

    初一數學教案15篇12-17

    初一數學教案有序數對06-12

    初一數學教案:有序數對11-24

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      亚洲国语中文字幕理论片 | 中文国产特黄特色在线视频 | 亚洲激情视频欧美专区 | 亚洲日韩mⅴ在线 | 亚洲欧美日韩国产一区二区三区 | 无遮挡国产高潮视频免费观看 |