高一數學教案

    時間:2022-12-21 15:47:33 數學教案 我要投稿

    高一數學教案合集15篇

      在教學工作者開展教學活動前,通常需要準備好一份教案,借助教案可以讓教學工作更科學化。教案要怎么寫呢?下面是小編收集整理的高一數學教案,僅供參考,歡迎大家閱讀。

    高一數學教案合集15篇

    高一數學教案1

      教學目標

      1.理解等比數列的概念,掌握等比數列的通項公式,并能運用公式解決簡單的問題.

      (1)正確理解等比數列的定義,了解公比的概念,明確一個數列是等比數列的限定條件,能根據定義判斷一個數列是等比數列,了解等比中項的概念;

      (2)正確認識使用等比數列的表示法,能靈活運用通項公式求等比數列的首項、公比、項數及指定的項;

      (3)通過通項公式認識等比數列的性質,能解決某些實際問題.

      2.通過對等比數列的研究,逐步培養學生觀察、類比、歸納、猜想等思維品質.

      3.通過對等比數列概念的歸納,進一步培養學生嚴密的思維習慣,以及實事求是的科學態度.

      教學建議

      教材分析

      (1)知識結構

      等比數列是另一個簡單常見的數列,研究內容可與等差數列類比,首先歸納出等比數列的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.

      (2)重點、難點分析

      教學重點是等比數列的定義和對通項公式的認識與應用,教學難點在于等比數列通項公式的推導和運用.

      ①與等差數列一樣,等比數列也是特殊的數列,二者有許多相同的性質,但也有明顯的區別,可根據定義與通項公式得出等比數列的特性,這些是教學的重點.

      ②雖然在等差數列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.

      ③對等差數列、等比數列的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.

      教學建議

      (1)建議本節課分兩課時,一節課為等比數列的概念,一節課為等比數列通項公式的應用.

      (2)等比數列概念的引入,可給出幾個具體的例子,由學生概括這些數列的相同特征,從而得到等比數列的定義.也可將幾個等差數列和幾個等比數列混在一起給出,由學生將這些數列進行分類,有一種是按等差、等比來分的,由此對比地概括等比數列的定義.

      (3)根據定義讓學生分析等比數列的公比不為0,以及每一項均不為0的特性,加深對概念的理解.

      (4)對比等差數列的表示法,由學生歸納等比數列的各種表示法. 啟發學生用函數觀點認識通項公式,由通項公式的結構特征畫數列的圖象.

      (5)由于有了等差數列的研究經驗,等比數列的研究完全可以放手讓學生自己解決,教師只需把握課堂的節奏,作為一節課的組織者出現.

      (6)可讓學生相互出題,解題,講題,充分發揮學生的主體作用.

      教學設計示例

      課題:等比數列的概念

      教學目標

      1.通過教學使學生理解等比數列的概念,推導并掌握通項公式.

      2.使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力.

      3.培養學生勤于思考,實事求是的精神,及嚴謹的科學態度.

      教學重點,難點

      重點、難點是等比數列的定義的歸納及通項公式的推導.

      教學用具

      投影儀,多媒體軟件,電腦.

      教學方法

      討論、談話法.

      教學過程

      一、提出問題

      給出以下幾組數列,將它們分類,說出分類標準.(幻燈片)

      ①-2,1,4,7,10,13,16,19,…

      ②8,16,32,64,128,256,…

      ③1,1,1,1,1,1,1,…

      ④243,81,27,9,3,1, , ,…

      ⑤31,29,27,25,23,21,19,…

      ⑥1,-1,1,-1,1,-1,1,-1,…

      ⑦1,-10,100,-1000,10000,-100000,…

      ⑧0,0,0,0,0,0,0,…

      由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列).

      二、講解新課

      請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數 這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列. (這里播放變形蟲分裂的多媒體軟件的第一步)

      等比數列(板書)

      1.等比數列的定義(板書)

      根據等比數列與等差數列的名字的區別與聯系,嘗試給等比數列下定義.學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的.教師寫出等比數列的定義,標注出重點詞語.

      請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列.學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數列的一般形式,學生可能說形如 的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當 時,數列 既是等差又是等比數列,當 時,它只是等差數列,而不是等比數列.教師追問理由,引出對等比數列的認識:

      2.對定義的認識(板書)

      (1)等比數列的首項不為0;

      (2)等比數列的每一項都不為0,即 ;

      問題:一個數列各項均不為0是這個數列為等比數列的什么條件?

      (3)公比不為0.

      用數學式子表示等比數列的定義.

      是等比數列 ①.在這個式子的寫法上可能會有一些爭議,如寫成 ,可讓學生研究行不行,好不好;接下來再問,能否改寫為 是等比數列 ?為什么不能?

      式子 給出了數列第 項與第 項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

      3.等比數列的通項公式(板書)

      問題:用 和 表示第 項 .

      ①不完全歸納法

      ②疊乘法

      ,… , ,這 個式子相乘得 ,所以 .

      (板書)(1)等比數列的通項公式

      得出通項公式后,讓學生思考如何認識通項公式.

      (板書)(2)對公式的認識

      由學生來說,最后歸結:

      ①函數觀點;

      ②方程思想(因在等差數列中已有認識,此處再復習鞏固而已).

      這里強調方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)

      如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究.同學可以試著編幾道題.

      三、小結

      1.本節課研究了等比數列的概念,得到了通項公式;

      2.注意在研究內容與方法上要與等差數列相類比;

      3.用方程的思想認識通項公式,并加以應用.

    高一數學教案2

      第二十四教時

      教材:倍角公式,推導和差化積及積化和差公式

      目的:繼續復習鞏固倍角公式,加強對公式靈活運用的訓練;同時,讓學生推導出和差化積和積化和差公式,并對此有所了解。

      過程:

      一、 復習倍角公式、半角公式和萬能公式的推導過程:

      例一、 已知 , ,tan = ,tan = ,求2 +

      (《教學與測試》P115 例三)

      解:

      又∵tan2 0,tan 0 ,

      2 + =

      例二、 已知sin cos = , ,求 和tan的值

      解:∵sin cos =

      化簡得:

      ∵ 即

      二、 積化和差公式的推導

      sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]

      sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]

      cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]

      cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]

      這套公式稱為三角函數積化和差公式,熟悉結構,不要求記憶,它的優點在于將積式化為和差,有利于簡化計算。(在告知公式前提下)

      例三、 求證:sin3sin3 + cos3cos3 = cos32

      證:左邊 = (sin3sin)sin2 + (cos3cos)cos2

      = (cos4 cos2)sin2 + (cos4 + cos2)cos2

      = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2

      = cos4cos2 + cos2 = cos2(cos4 + 1)

      = cos22cos22 = cos32 = 右邊

      原式得證

      三、 和差化積公式的推導

      若令 + = , = ,則 , 代入得:

      這套公式稱為和差化積公式,其特點是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。

      例四、 已知cos cos = ,sin sin = ,求sin( + )的值

      解:∵cos cos = , ①

      sin sin = , ②

      四、 小結:和差化積,積化和差

      五、 作業:《課課練》P3637 例題推薦 13

      P3839 例題推薦 13

      P40 例題推薦 13

    高一數學教案3

      教學目標

      (1)正確理解充分條件、必要條件和充要條件的概念;

      (2)能正確判斷是充分條件、必要條件還是充要條件;

      (3)培養學生的邏輯思維能力及歸納總結能力;

      (4)在充要條件的教學中,培養等價轉化思想.

      教學建議

      (一)教材分析

      1.知識結構

      首先給出推斷符號“”,并引出的意義,在此基礎上講述了充要條件的初步知識.

      2.重點難點分析

      本節的重點與難點是關于充要條件的判斷.

      (1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數學概念,主要用來區分命題的條件和結論之間的因果關系.

      (2)在判斷條件和結論之間的因果關系中應該:

      ①首先分清條件是什么,結論是什么;

      ②然后嘗試用條件推結論,再嘗試用結論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;

      ③最后再指出條件是結論的什么條件.

      (3)在討論條件和條件的關系時,要注意:

      ①若,但,則是的充分但不必要條件;

      ②若,但,則是的必要但不充分條件;

      ③若,且,則是的充要條件;

      ④若,且,則是的充要條件;

      ⑤若,且,則是的既不充分也不必要條件.

      (4)若條件以集合的形式出現,結論以集合的形式出現,則借助集合知識,有助于充要條件的理解和判斷.

      ①若,則是的充分條件;

      顯然,要使元素,只需就夠了.類似地還有:

      ②若,則是的必要條件;

      ③若,則是的充要條件;

      ④若,且,則是的既不必要也不充分條件.

      (5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當我們證明某一命題有困難時,可以證明該命題的逆否命題成立,從而得出原命題成立.

      (二)教法建議

      1.學習充分條件、必要條件和充要條件知識,要注意與前面有關邏輯初步知識內容相聯系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的語句,也可以是含有邏輯聯結詞或“若則”形式的復合命題.

      2.由于這節課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發學生的學習興趣是關鍵.教學中始終要注意以學生為主,讓學生在自我思考、相互交流中去結概念“下定義”,去體會概念的本質屬性.

      3.由于“充要條件”與命題的真假、命題的條件與結論的相互關系緊密相關,為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結論來說,是否充分,從而引入“充分條件”的概念,進而引入“必要條件”的概念.

      4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結論之間的關系來認識“充分條件”的概念,從互為逆否命題的等價性來引出“必要條件”的概念.

      教學設計示例

      充要條件

      教學目標

      (1)正確理解充分條件、必要條件和充要條件的概念;

      (2)能正確判斷是充分條件、必要條件還是充要條件;

      (3)培養學生的邏輯思維能力及歸納總結能力;

      (4)在充要條件的教學中,培養等價轉化思想.

      教學重點難點:

      關于充要條件的判斷

      教學用具:

      幻燈機或實物投影儀

      教學過程設計

      1.復習引入

      練習:判斷下列命題是真命題還是假命題(用幻燈投影):

      (1)若,則;

      (2)若,則;

      (3)全等三角形的面積相等;

      (4)對角線互相垂直的四邊形是菱形;

      (5)若,則;

      (6)若方程有兩個不等的實數解,則.

      (學生口答,教師板書.)

      (1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.

      置疑:對于命題“若,則”,有時是真命題,有時是假命題.如何判斷其真假的?

      答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.

      對于命題“若,則”,如果由經過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結論的成立,這時我們稱條件是成立的充分條件,記作.

      2.講授新課

      (板書充分條件的定義.)

      一般地,如果已知,那么我們就說是成立的充分條件.

      提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結論之間的關系.

      (學生口答)

      (1)“,”是“”成立的充分條件;

      (2)“三角形全等”是“三角形面積相等”成立的充分條件;

      (3)“方程的有兩個不等的實數解”是“”成立的充分條件.

      從另一個角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.

      (板書必要條件的定義.)

      提出問題:用“充分條件”和“必要條件”來敘述上述6個命題.

      (學生口答).

      (1)因為,所以是的充分條件,是的必要條件;

      (2)因為,所以是的必要條件,是的充分條件;

      (3)因為“兩三角形全等”“兩三角形面積相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;

      (4)因為“四邊形的對角線互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;

      (5)因為,所以是的必要條件,是的充分條件;

      (6)因為“方程的有兩個不等的實根”“”,而且“方程的有兩個不等的實根”“”,所以“方程的有兩個不等的實根”是“”充分條件,而且是必要條件.

      總結:如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.

      (板書充要條件的定義.)

      3.鞏固新課

      例1(用投影儀投影.)

      (學生活動,教師引導學生作出下面回答.)

      ①因為有理數一定是實數,但實數不一定是有理數,所以是的充分非必要條件,是的必要非充分條件;

      ②一定能推出,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;

      ③、是奇數,那么一定是偶數;是偶數,、不一定都是奇數(可能都為偶數),所以是的充分非必要條件,是的必要非充分條件;

      ④表示或,所以是成立的必要非充分條件;

      ⑤由交集的定義可知且是成立的充要條件;

      ⑥由知且,所以是成立的充分非必要條件;

      ⑦由知或,所以是,成立的必要非充分條件;

      ⑧易知“是4的倍數”是“是6的倍數”成立的既非充分又非必要條件;

      (通過對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認識.)

      例2已知是的充要條件,是的必要條件同時又是的充分條件,試與的關系.(投影)

      解:由已知得,

      所以是的充分條件,或是的必要條件.

      4.小結回授

      今天我們學習了充分條件、必要條件和充要條件的概念,并學會了判斷條件A是B的什么條件,這為我們今后解決數學問題打下了等價轉化的基礎.

      課內練習:課本(人教版,試驗修訂本,第一冊(上))第35頁練習l、2;第36頁練習l、2.

      (通過練習,檢查學生掌握情況,有針對性的進行講評.)

      5.課外作業:教材第36頁 習題1.8 1、2、3.

    高一數學教案4

      1.1 集合含義及其表示

      教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。

      教學過程:

      一、閱讀下列語句:

      1) 全體自然數0,1,2,3,4,5,

      2) 代數式 .

      3) 拋物線 上所有的點

      4) 今年本校高一(1)(或(2))班的全體學生

      5) 本校實驗室的所有天平

      6) 本班級全體高個子同學

      7) 著名的科學家

      上述每組語句所描述的對象是否是確定的?

      二、1)集合:

      2)集合的元素:

      3)集合按元素的個數分,可分為1)__________2)_________

      三、集合中元素的三個性質:

      1)___________2)___________3)_____________

      四、元素與集合的關系:1)____________2)____________

      五、特殊數集專用記號:

      1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______

      4)有理數集______5)實數集_____ 6)空集____

      六、集合的表示方法:

      1)

      2)

      3)

      七、例題講解:

      例1、 中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是 ( )

      A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形

      例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?

      1)地球上的四大洋構成的集合;

      2)函數 的全體 值的集合;

      3)函數 的全體自變量 的集合;

      4)方程組 解的集合;

      5)方程 解的集合;

      6)不等式 的解的集合;

      7)所有大于0且小于10的奇數組成的集合;

      8)所有正偶數組成的集合;

      例3、用符號 或 填空:

      1) ______Q ,0_____N, _____Z,0_____

      2) ______ , _____

      3)3_____ ,

      4)設 , , 則

      例4、用列舉法表示下列集合;

      1.

      2.

      3.

      4.

      例5、用描述法表示下列集合

      1.所有被3整除的數

      2.圖中陰影部分點(含邊界)的坐標的集合

      課堂練習:

      例6、設含有三個實數的集合既可以表示為 ,也可以表示為 ,則 的值等于___________

      例7、已知: ,若 中元素至多只有一個,求 的取值范圍。

      思考題:數集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。

      小結:

      作業 班級 姓名 學號

      1. 下列集合中,表示同一個集合的是 ( )

      A . M= ,N= B. M= ,N=

      C. M= ,N= D. M= ,N=

      2. M= ,X= ,Y= , , .則 ( )

      A . B. C. D.

      3. 方程組 的解集是____________________.

      4. 在(1)難解的題目,(2)方程 在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.

      5. 設集合 A= , B= ,

      C= , D= ,E= 。

      其中有限集的個數是____________.

      6. 設 ,則集合 中所有元素的和為

      7. 設x,y,z都是非零實數,則用列舉法將 所有可能的值組成的集合表示為

      8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

      若A= ,試用列舉法表示集合B=

      9. 把下列集合用另一種方法表示出來:

      (1) (2)

      (3) (4)

      10. 設a,b為整數,把形如a+b 的一切數構成的集合記為M,設 ,試判斷x+y,x-y,xy是否屬于M,說明理由。

      11. 已知集合A=

      (1) 若A中只有一個元素,求a的值,并求出這個元素;

      (2) 若A中至多只有一個元素,求a的取值集合。

      12.若-3 ,求實數a的值。

      【總結】20xx年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:集合含義及其表示能給您帶來幫助!

    高一數學教案5

      一、教材

      首先談談我對教材的理解,《兩條直線平行與垂直的判定》是人教A版高中數學必修2第三章3.1.2的內容,本節課的內容是兩條直線平行與垂直的判定的推導及其應用,學生對于直線平行和垂直的概念已經十分熟悉,并且在上節課學習了直線的傾斜角與斜率,為本節課的學習打下了基礎。

      二、學情

      教材是我們教學的工具,是載體。但我們的教學是要面向學生的,高中學生本身身心已經趨于成熟,管理與教學難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學生可以說是必修課。本階段的學生思維能力已經非常成熟,能夠有自己獨立的思考,所以應該積極發揮這種優勢,讓學生獨立思考探索。

      三、教學目標

      根據以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:

      (一)知識與技能

      掌握兩條直線平行與垂直的判定,能夠根據其判定兩條直線的位置關系。

      (二)過程與方法

      在經歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。

      (三)情感態度價值觀

      在猜想論證的過程中,體會數學的嚴謹性。

      四、教學重難點

      我認為一節好的數學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節課的內容肯定是密不可分的。那么根據授課內容可以確定本節課的教學重點是:兩條直線平行與垂直的判定。本節課的教學難點是:兩條直線平行與垂直的判定的推導。

      五、教法和學法

      現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,本節課我采用講授法、練習法、小組合作等教學方法。

      六、教學過程

      下面我將重點談談我對教學過程的設計。

      (一)新課導入

      首先是導入環節,那么我采用復習導入,回顧上節課所學的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關系呢?

      利用上節課所學的知識進行導入,很好的克服學生的畏難情緒。

      (二)新知探索

      接下來是教學中最重要的新知探索環節,我主要采用講解法、小組合作、啟發法等。

    高一數學教案6

      教學目標:

      1、掌握對數的運算性質,并能理解推導這些法則的依據和過程;

      2、能較熟練地運用法則解決問題;

      教學重點:

      對數的運算性質

      教學過程:

      一、問題情境:

      1、指數冪的運算性質;

      2、問題:對數運算也有相應的運算性質嗎?

      二、學生活動:

      1、觀察教材P59的表2—3—1,驗證對數運算性質、

      2、理解對數的運算性質、

      3、證明對數性質、

      三、建構數學:

      1)引導學生驗證對數的運算性質、

      2)推導和證明對數運算性質、

      3)運用對數運算性質解題、

      探究:

      ①簡易語言表達:“積的對數=對數的和”……

      ②有時逆向運用公式運算:如

      ③真數的取值范圍必須是:不成立;不成立、

      ④注意:,

      四、數學運用:

      1、例題:

      例1、(教材P60例4)求下列各式的值:

      (1);(2)125;(3)(補充)lg、

      例2、(教材P60例4)已知,,求下列各式的值(結果保留4位小數)

      (1);(2)、

      例3、用,,表示下列各式:

      例4、計算:

      (1);(2);(3)

      2、練習:

      P60(練習)1,2,4,5、

      五、回顧小結:

      本節課學習了以下內容:對數的運算法則,公式的逆向使用、

      六、課外作業:

      P63習題5

      補充:

      1、求下列各式的值:

      (1)6—3;(2)lg5+lg2;(3)3+、

      2、用lgx,lgy,lgz表示下列各式:

      (1)lg(xyz);(2)lg;(3);(4)、

      3、已知lg2=0、3010,lg3=0、4771,求下列各對數的值(精確到小數點后第四位)

      (1)lg6;(2)lg;(3)lg;(4)lg32、

    高一數學教案7

      教學目標:

      1、理解對數的概念,能夠進行對數式與指數式的互化;

      2、滲透應用意識,培養歸納思維能力和邏輯推理能力,提高數學發現能力。

      教學重點:

      對數的概念

      教學過程:

      一、問題情境:

      1、(1)莊子:一尺之棰,日取其半,萬世不竭、①取5次,還有多長?②取多少次,還有0、125尺?

      (2)假設20xx年我國國民生產總值為a億元,如果每年平均增長8%,那么經過多少年國民生產總值是20xx年的2倍?

      抽象出:1、=?,=0、125x=?2、=2x=?

      2、問題:已知底數和冪的值,如何求指數?你能看得出來嗎?

      二、學生活動:

      1、討論問題,探究求法、

      2、概括內容,總結對數概念、

      3、研究指數與對數的關系、

      三、建構數學:

      1)引導學生自己總結并給出對數的概念、

      2)介紹對數的表示方法,底數、真數的含義、

      3)指數式與對數式的關系、

      4)常用對數與自然對數、

      探究:

      ⑴負數與零沒有對數、

      ⑵,、

      ⑶對數恒等式(教材P58練習6)

      ①;②、

      ⑷兩種對數:

      ①常用對數:;

      ②自然對數:、

      (5)底數的取值范圍為;真數的取值范圍為、

      四、數學運用:

      1、例題:

      例1、(教材P57例1)將下列指數式改寫成對數式:

      (1)=16;(2)=;(3)=20;(4)=0、45、

      例2、(教材P57例2)將下列對數式改寫成指數式:

      (1);(2)3=—2;(3);(4)(補充)ln10=2、303

      例3、(教材P57例3)求下列各式的值:

      ⑴;⑵;⑶(補充)、

      2、練習:

      P58(練習)1,2,3,4,5、

      五、回顧小結:

      本節課學習了以下內容:

      ⑴對數的定義;

    ⑵指數式與對數式互換;

    ⑶求對數式的值(利用計算器求對數值)、

      六、課外作業:P63習題1,2,3,4、

    高一數學教案8

      教學目標

      1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路

      (1)分析,(2)建模,(3)求解,(4)檢驗;

      2、實際問題中的有關術語、名稱:

      (1)仰角與俯角:均是指視線與水平線所成的角;

      (2)方位角:是指從正北方向順時針轉到目標方向線的夾角;

      (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

      3、用正弦余弦定理解實際問題的常見題型有:

      測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

      教學重難點

      1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路

      (1)分析,(2)建模,(3)求解,(4)檢驗;

      2、實際問題中的有關術語、名稱:

      (1)仰角與俯角:均是指視線與水平線所成的角;

      (2)方位角:是指從正北方向順時針轉到目標方向線的夾角;

      (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

      3、用正弦余弦定理解實際問題的常見題型有:

      測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

      教學過程

      一、知識歸納

      1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路

      (1)分析,(2)建模,(3)求解,(4)檢驗;

      2、實際問題中的有關術語、名稱:

      (1)仰角與俯角:均是指視線與水平線所成的角;

      (2)方位角:是指從正北方向順時針轉到目標方向線的夾角;

      (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;

      3、用正弦余弦定理解實際問題的常見題型有:

      測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;

      二、例題討論

      一)利用方向角構造三角形

      四)測量角度問題

      例4、在一個特定時段內,以點E為中心的7海里以內海域被設為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東。

    高一數學教案9

      1、知識與技能

      (1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);

      (2)理解任意角的三角函數不同的定義方法;

      (3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數值分別用正弦線、余弦線、正切線表示出來;

      (4)掌握并能初步運用公式一;

      (5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.

      2、過程與方法

      初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.

      3、情態與價值

      任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.

      本節利用單位圓上點的坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系.

      教學重難點

      重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).

      難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.

    高一數學教案10

      1、教材(教學內容)

      本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用、

      2、設計理念

      本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標、

      3、教學目標

      知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題、

      過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用、

      情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美、

      4、重點難點

      重點:任意角三角函數的定義、

      難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、

      5、學情分析

      學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念、在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構、

      6、教法分析

      “問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構、這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用、

      7、學法分析

      本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標、

      8、教學設計(過程)

      一、引入

      問題1:我們已經學過了任意角和弧度制,你對“角”這一概念印象最深的是什么?

      問題2:研究“任意角”這一概念時,我們引進了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?

      問題3:當角clipXimage002的終邊在繞頂點O轉動時,終邊上的一個點P(x,y)必定隨著終邊繞頂點O作圓周運動,在這圓周運動中,有哪些數量?圓周運動的這些量之間的關系能用一個函數模型來刻畫嗎?

      二、原有認知結構的改造和重構

      問題4:當角clipXimage002[1]是銳角時,clipXimage004,線段OP的長度clipXimage006這幾個量之間有何關系?

      學生回答,分析結論,指出這種關系就是我們在初中學習過的銳角三角函數

      學生閱讀教材,并思考:

      問題5:銳角三角函數是我們高中意義上的函數嗎?如何利用函數的定義來理解它?

      學生討論并回答

      三、新概念的形成

      問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數的定義嗎?

      學生回答,并閱讀教材,得到任意角三角函數的定義、并思考:

      問題7:任意角三角函數的定義符合我們高中所學的函數定義嗎?

      展示任意角三角函數的定義,并指出它是如何刻劃圓周運動的

      并類比函數的研究方法,得出任意角三角函數的定義域和值域。

      四、概念的運用

      1、基礎練習

      ①口算clipXimage008的值、

      ②分別求clipXimage010的'值

      小結:ⅰ)畫終邊,求終邊與單位圓交點的坐標,算比值

      ⅱ)誘導公式(一)

      ③若clipXimage012,試寫出角clipXimage002[2]的值。

      ④若clipXimage015,不求值,試判斷clipXimage017的符號

      ⑤若clipXimage019,則clipXimage021為第象限的角、

      例1、已知角clipXimage002[3]的終邊過點clipXimage024,求clipXimage026之值

      若P點的坐標變為clipXimage028,求clipXimage030的值

      小結:任意角三角函數的等價定義(終邊定義法)

      例2、一物體A從點clipXimage032出發,在單位圓上沿逆時針方向作勻速圓周運動,若經過的弧長為clipXimage034,試用clipXimage034[1]表示物體A所在位置的坐標。若該物體作圓周運動的圓的半徑變為clipXimage006[1],如何用clipXimage034[2]來表示物體A所在位置的坐標?

      小結:可以采用三角函數模型來刻畫圓周運動

      五、拓展探究

      問題8:當角clipXimage002[4]的終邊繞頂點O作圓周運動時,角clipXimage002[5]的終邊與單位圓的交點clipXimage039的坐標clipXimage041clipXimage043與角clipXimage002[6]之間還可以建立其它函數模型嗎?

      思考:引入平面直角坐標系后,我們可以把圓周運動用數來刻畫,這是將“形”轉化成為“數”;角clipXimage002[7]正弦值是一個數,你能借助平面直角坐標系和單位圓,用“形”來表示這個“數”嗎?角clipXimage002[8]余弦值、正切值呢?

      六、課堂小結

      問題9:請你談談本節課的收獲有哪些?

      七、課后作業

      教材P21第6、7、8題

    高一數學教案11

      一、教學目標

      1.知識與技能

      (1)解二分法求解方程的近似解的思想方法,會用二分法求解具體方程的近似解;

      (2)體會程序化解決問題的思想,為算法的學習作準備。

      2.過程與方法

      (1)讓學生在求解方程近似解的實例中感知二分發思想;

      (2)讓學生歸納整理本節所學的知識。

      3.情感、態度與價值觀

      ①體會二分法的程序化解決問題的思想,認識二分法的價值所在,使學生更加熱愛數學;

      ②培養學生認真、耐心、嚴謹的數學品質。

      二、 教學重點、難點

      重點:用二分法求解函數f(x)的零點近似值的步驟。

      難點:為何由︱a - b ︳< 便可判斷零點的近似值為a(或b)?

      三、 學法與教學用具

      1.想-想。

      2.教學用具:計算器。

      四、教學設想

      (一)、創設情景,揭示課題

      提出問題:

      (1)一元二次方程可以用公式求根,但是沒有公式可以用來求解放程 ㏑x+2x-6=0的根;聯系函數的零點與相應方程根的關系,能否利用函數的有關知識來求她的根呢?

      (2)通過前面一節課的學習,函數f(x)=㏑x+2x-6在區間內有零點;進一步的問題是,如何找到這個零點呢?

      (二)、研討新知

      一個直觀的想法是:如果能夠將零點所在的范圍盡量的縮小,那么在一定的精確度的要求下,我們可以得到零點的近似值;為了方便,我們通過“取中點”的方法逐步縮小零點所在的范圍。

      取區間(2,3)的中點2.5,用計算器算得f(2.5)≈-0.084,因為f(2.5)xf(3)<0,所以零點在區間(2.5,3)內;

      再取區間(2.5,3)的中點2.75,用計算器算得f(2.75)≈0.512,因為f(2.75)xf(2.5)<0,所以零點在(2.5,2.75)內;

      由于(2,3),(2.5,3),(2.5,2.75)越來越小,所以零點所在范圍確實越來越小了;重復上述步驟,那么零點所在范圍會越來越小,這樣在有限次重復相同的步驟后,在一定的精確度下,將所得到的零點所在區間上任意的一點作為零點的近似值,特別地可以將區間的端點作為零點的近似值。例如,當精確度為0.01時,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我們可以將x=2.54作為函數f(x)=㏑x+2x-6零點的近似值,也就是方程㏑x+2x-6=0近似值。

      這種求零點近似值的方法叫做二分法。

      1.師:引導學生仔細體會上邊的這段文字,結合課本上的相關部分,感悟其中的思想方法.

      生:認真理解二分法的函數思想,并根據課本上二分法的一般步驟,探索其求法。

      2.為什么由︱a - b ︳<便可判斷零點的近似值為a(或b)?

      先由學生思考幾分鐘,然后作如下說明:

      設函數零點為x0,則a<x0<b,則:

      0<x0-a<b-a,a-b<x0-b<0;

      由于︱a - b ︳<,所以

      ︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

      即a或b 作為零點x0的近似值都達到了給定的精確度。

     (三)、鞏固深化,發展思維

      1.學生在老師引導啟發下完成下面的例題

      例2.借助計算器用二分法求方程2x+3x=7的近似解(精確到0.01)

      問題:原方程的近似解和哪個函數的零點是等價的?

      師:引導學生在方程右邊的常數移到左邊,把左邊的式子令為f(x),則原方程的解就是f(x)的零點。

      生:借助計算機或計算器畫出函數的圖象,結合圖象確定零點所在的區間,然后利用二分法求解.

      (四)、歸納整理,整體認識

      在師生的互動中,讓學生了解或體會下列問題:

      (1)本節我們學過哪些知識內容?

      (2)你認為學習“二分法”有什么意義?

      (3)在本節課的學習過程中,還有哪些不明白的地方?

      (五)、布置作業

      P92習題3.1A組第四題,第五題。

    高一數學教案12

      目標:

      1.讓學生熟練掌握二次函數的圖象,并會判斷一元二次方程根的存在性及根的個數 ;

      2.讓學生了解函數的零點與方程根的聯系 ;

      3.讓學生認識到函數的圖象及基本性質(特別是單調性)在確定函數零點中的作用 ;

      4。培養學生動手操作的能力 。

      二、教學重點、難點

      重點:零點的概念及存在性的判定;

      難點:零點的確定。

      三、復習引入

      例1:判斷方程 x2-x-6=0 解的存在。

      分析:考察函數f(x)= x2-x-6, 其

      圖像為拋物線容易看出,f(0)=-60,

      f(4)0,f(-4)0

      由于函數f(x)的圖像是連續曲線,因此,

      點B (0,-6)與點C(4,6)之間的那部分曲線

      必然穿過x軸,即在區間(0,4)內至少有點

      X1 使f(X1)=0;同樣,在區間(-4,0) 內也至

      少有點X2,使得f( X2)=0,而方程至多有兩

      個解,所以在(-4,0),(0,4)內各有一解

      定義:對于函數y=f(x),我們把使f(x)=0的實數 x叫函數y=f(x)的零點

      抽象概括

      y=f(x)的圖像與x軸的交點的橫坐標叫做該函數的零點,即f(x)=0的解。

      若y=f(x)的圖像在[a,b]上是連續曲線,且f(a)f(b)0,則在(a,b)內至少有一個零點,即f(x)=0在 (a,b)內至少有一個實數解。

      f(x)=0有實根(等價與y=f(x))與x軸有交點(等價與)y=f(x)有零點

      所以求方程f(x)=0的根實際上也是求函數y=f(x)的零點

      注意:1、這里所說若f(a)f(b)0,則在區間(a,b)內方程f(x)=0至少有一個實數解指出了方程f(x)=0的實數解的存在性,并不能判斷具體有多少個解;

      2、若f(a)f(b)0,且y=f(x)在(a,b)內是單調的,那么,方程f(x)=0在(a,b)內有唯一實數解;

      3、我們所研究的大部分函數,其圖像都是連續的曲線;

      4、但此結論反過來不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

      5、缺少條件在[a,b]上是連續曲線則不成立,如:f(x)=1/ x,有f(-1)xf(1)0但沒有零點。

      四、知識應用

      例2:已知f(x)=3x-x2 ,問方程f(x)=0在區間[-1,0]內沒有實數解?為什么?

      解:f(x)=3x-x2的圖像是連續曲線, 因為

      f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

      所以f(-1) f(0) 0,在區間[-1,0]內有零點,即f(x)=0在區間[-1,0]內有實數解

      練習:求函數f(x)=lnx+2x-6 有沒有零點?

      例3 判定(x-2)(x-5)=1有兩個相異的實數解,且有一個大于5,一個小于2。

      解:考慮函數f(x)=(x-2)(x-5)-1,有

      f(5)=(5-2)(5-5)-1=-1

      f(2)=(2-2)(2-5)-1=-1

      又因為f(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內有一個交點,在( -,2)內也有一個交點,所以方程式(x-2)(x-5)=1有兩個相異數解,且一個大于5,一個小于2。

      練習:關于x的方程2x2-3x+2m=0有兩個實根均在[-1,1]內,求m的取值范圍。

      五、課后作業

      p133第2,3題

    高一數學教案13

      教學目標

      會運用圖象判斷單調性;理解函數的單調性,能判斷或證明一些簡單函數單調性;注意必須在定義域內或其子集內討論函數的單調性。

      重 點

      函數單調性的證明及判斷。

      難 點

      函數單調性證明及其應用。

      一、復習引入

      1、函數的定義域、值域、圖象、表示方法

      2、函數單調性

      (1)單調增函數

      (2)單調減函數

      (3)單調區間

      二、例題分析

      例1、畫出下列函數圖象,并寫出單調區間:

      (1) (2) (2)

      例2、求證:函數 在區間 上是單調增函數。

      例3、討論函數 的單調性,并證明你的結論。

      變(1)討論函數 的單調性,并證明你的結論

      變(2)討論函數 的單調性,并證明你的結論。

      例4、試判斷函數 在 上的單調性。

      三、隨堂練習

      1、判斷下列說法正確的是 。

      (1)若定義在 上的函數 滿足 ,則函數 是 上的單調增函數;

      (2)若定義在 上的函數 滿足 ,則函數 在 上不是單調減函數;

      (3)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數;

      (4)若定義在 上的函數 在區間 上是單調增函數,在區間 上也是單調增函數,則函數 是 上的單調增函數。

      2、若一次函數 在 上是單調減函數,則點 在直角坐標平面的( )

      A.上半平面 B.下半平面 C.左半平面 D.右半平面

      3、函數 在 上是___ ___;函數 在 上是__ _____。

      3.下圖分別為函數 和 的圖象,求函數 和 的單調增區間。

      4、求證:函數 是定義域上的單調減函數。

      四、回顧小結

      1、函數單調性的判斷及證明。

      課后作業

      一、基礎題

      1、求下列函數的單調區間

      (1) (2)

      2、畫函數 的圖象,并寫出單調區間。

      二、提高題

      3、求證:函數 在 上是單調增函數。

      4、若函數 ,求函數 的單調區間。

      5、若函數 在 上是增函數,在 上是減函數,試比較 與 的大小。

      三、能力題

      6、已知函數 ,試討論函數f(x)在區間 上的單調性。

      變(1)已知函數 ,試討論函數f(x)在區間 上的單調性。

    高一數學教案14

      [三維目標]

      一、知識與技能:

      1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系

      2、了解集合的運算包含了集合表示法之間的轉化及數學解題的一般思想

      3、了解集合元素個數問題的討論說明

      二、過程與方法

      通過提問匯總練習提煉的形式來發掘學生學習方法

      三、情感態度與價值觀

      培養學生系統化及創造性的思維

      [教學重點、難點]:會正確應用其概念和性質做題 [教 具]:多媒體、實物投影儀

      [教學方法]:講練結合法

      [授課類型]:復習課

      [課時安排]:1課時

      [教學過程]:集合部分匯總

      本單元主要介紹了以下三個問題:

      1,集合的含義與特征

      2,集合的表示與轉化

      3,集合的基本運算

      一,集合的含義與表示(含分類)

      1,具有共同特征的對象的全體,稱一個集合

      2,集合按元素的個數分為:有限集和無窮集兩類

    高一數學教案15

      教學目標

      1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.

      (1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.

      (2)能從數和形兩個角度認識單調性和奇偶性.

      (3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.

      2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.

      3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.

      教學建議

      一、知識結構

      (1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.

      (2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.

      二、重點難點分析

      (1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.

      (2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.

      三、教法建議

      (1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.

      (2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.

      函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.

    【高一數學教案】相關文章:

    高一數學教案06-20

    高一數學教案12-21

    高一數學教案07-20

    關于高一數學教案09-30

    高一必修五數學教案04-10

    高一必修四數學教案04-13

    人教版高一數學教案07-30

    上海高一數學教案07-30

    高一數學教案(15篇)12-09

    最新高一數學教案09-27

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      亚洲人成综合小说社区在线 | 亚洲日本一本在线 | 亚洲日本韩国不卡中文字幕 | 性刺激的欧美三级视频中文字幕 | 一本久久精品国产综合 | 一本综合九九国产二区 |