中考數學一模函數必做專題試題

    時間:2021-03-27 11:15:58 試題 我要投稿

    關于中考數學一模函數必做專題試題

      1、(2014濟寧第8題)如果二次函數y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數根.請根據你對這句話的理解,解決下面問題:若m、n(m

    關于中考數學一模函數必做專題試題

      A. m

      【考點】: 拋物線與x軸的交點.

      【分析】: 依題意畫出函數y=(x﹣a)(x﹣b)圖象草圖,根據二次函數的增減性求解.

      【解答】: 解:依題意,畫出函數y=(x﹣a)(x﹣b)的圖象,如圖所示.

      函數圖象為拋物線,開口向上,與x軸兩個交點的橫坐標分別為a,b(a

      方程1﹣(x﹣a)(x﹣b)=0轉化為(x﹣a)(x﹣b)=1,方程的兩根是拋物線y=(x﹣a)(x﹣b)與直線y=1的兩個交點.

      由拋物線開口向上,則在對稱軸左側,y隨x增大而減少

      故選A.

      【點評】: 本題考查了二次函數與一元二次方程的關系,考查了數形結合的數學思想.解題時,畫出函數草圖,由函數圖象直觀形象地得出結論,避免了繁瑣復雜的計算.

      2、(2014年山東泰安第20題)二次函數y=ax2+bx+c(a,b,c為常數,且a0)中的x與y的部分對應值如下表:

      X ﹣1 0 1 3

      y ﹣1 3 5 3

      下列結論:

      (1)ac

      (2)當x1時,y的值隨x值的增大而減小.

      (3)3是方程ax2+(b﹣1)x+c=0的一個根;

      (4)當﹣10.

      其中正確的個數為()

      A.4個 B. 3個 C. 2個 D. 1個

      【分析】:根據表格數據求出二次函數的對稱軸為直線x=1.5,然后根據二次函數的性質對各小題分析判斷即可得解.

      【解答】:由圖表中數據可得出:x=1時,y=5值最大,所以二次函數y=ax2+bx+c開口向下,a又x=0時,y=3,所以c=30,所以ac0,故(1)正確;

      ∵二次函數y=ax2+bx+c開口向下,且對稱軸為x= =1.5,當x1.5時,y的值隨x值的增大而減小,故(2)錯誤;

      ∵x=3時,y=3,9a+3b+c=3,∵c=3,9a+3b+3=3,9a+3b=0,3是方程ax2+(b﹣1)x+c=0的.一個根,故(3)正確;

      ∵x=﹣1時,ax2+bx+c=﹣1,x=﹣1時,ax2+(b﹣1)x+c=0,∵x=3時,ax2+(b﹣1)x+c=0,且函數有最大值,當﹣10,故(4)正確.

      故選B.

      【點評】:本題考查了二次函數的性質,二次函數圖象與系數的關系,拋物線與x軸的交點,二次函數與不等式,有一定難度.熟練掌握二次函數圖象的性質是解題的關鍵.

      3、(2014年山東煙臺第11題)二次函數y=ax2+bx+c(a0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:

      ①4a+b=0;②9a+c③8a+7b+2c④當x﹣1時,y的值隨x值的增大而增大.

      其中正確的結論有()

      A.1個 B. 2個 C. 3個 D. 4個

      【分析】:根據拋物線的對稱軸為直線x=﹣ =2,則有4a+b=0;觀察函數圖象得到當x=﹣3時,函數值小于0,則9a﹣3b+c0,即9a+c由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根據拋物線開口向下得a0,于是有8a+7b+2c由于對稱軸為直線x=2,根據二次函數的性質得到當x2時,y隨x的增大而減小.

      【解答】:∵拋物線的對稱軸為直線x=﹣ =2,b=﹣4a,即4a+b=0,所以①正確;

      ∵當x=﹣3時,y0,9a﹣3b+c0,即9a+c3b,所以②錯誤;

      ∵拋物線與x軸的一個交點為(﹣1,0),a﹣b+c=0,

      而b=﹣4a,a+4a+c=0,即c=﹣5a,8a+7b+2c=8a﹣28a﹣10a=﹣30a,

      ∵拋物線開口向下,a0,8a+7b+2c0,所以③正確;

      ∵對稱軸為直線x=2,

      當﹣12時,y隨x的增大而減小,所以④錯誤.故選B.

      【點評】:本題考查了二次函數圖象與系數的關系:二次函數y=ax2+bx+c(a0),二次項系數a決定拋物線的開口方向和大小,當a0時,拋物線向上開口;當a0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置,當a與b同號時(即ab0),對稱軸在y軸左; 當a與b異號時(即ab0),對稱軸在y軸右;常數項c決定拋物線與y軸交點. 拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定,△=b2﹣4ac0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac0時,拋物線與x軸沒有交點.

      4、(2014威海第11題)已知二次函數y=ax2+bx+c(a0)的圖象如圖,則下列說法:

      ①c=0;②該拋物線的對稱軸是直線x=﹣1;③當x=1時,y=2a;④am2+bm+a﹣1).

      其中正確的個數是( )

      A. 1 B. 2 C. 3 D. 4

      【考點】: 二次函數圖象與系數的關系.

      【分析】: 由拋物線與y軸的交點判斷c與0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.

      【解答】: 解:拋物線與y軸交于原點,c=0,故①正確;

      該拋物線的對稱軸是: ,直線x=﹣1,故②正確;

      當x=1時,y=2a+b+c,

      ∵對稱軸是直線x=﹣1,

      ,b=2a,

      又∵c=0,

      y=4a,故③錯誤;

      x=m對應的函數值為y=am2+bm+c,

      x=﹣1對應的函數值為y=a﹣b+c,又x=﹣1時函數取得最小值,

      a﹣b+c

      ∵b=2a,

      am2+bm+a﹣1).故④正確.

      故選:C.

      【點評】: 本題考查了二次函數圖象與系數的關系.二次函數y=ax2+bx+c(a0)系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.

      5、(2014寧波第12題)已知點A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點A關于拋物線對稱軸的對稱點坐標為( )

      A. (﹣3,7) B. (﹣1,7) C. (﹣4,10) D. (0,10)

      【考點】: 二次函數圖象上點的坐標特征;坐標與圖形變化-對稱.

      【分析】: 把點A坐標代入二次函數解析式并利用完全平方公式整理,然后根據非負數的性質列式求出a、b,再求出點A的坐標,然后求出拋物線的對稱軸,再根據對稱性求解即可.

      【解答】: 解:∵點A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,

      (a﹣2b)2+4(a﹣2b)+10=2﹣4ab,

      a2﹣4ab+4b2+4a﹣8ab+10=2﹣4ab,

      (a+2)2+4(b﹣1)2=0,

      a+2=0,b﹣1=0,

      解得a=﹣2,b=1,

      a﹣2b=﹣2﹣21=﹣4,

      2﹣4ab=2﹣4(﹣2)1=10,

      點A的坐標為(﹣4,10),

      ∵對稱軸為直線x=﹣ =﹣2,

      點A關于對稱軸的對稱點的坐標為(0,10).

      故選D.

      【點評】: 本題考查了二次函數圖象上點的坐標特征,二次函數的對稱性,坐標與圖形的變化﹣對稱,把點的坐標代入拋物線解析式并整理成非負數的形式是解題的關鍵.

      6、(2014溫州第10題)如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經過動點A的反比例函數y= (k0)中k的值的變化情況是()

      A. 一直增大 B. 一直減小 C. 先增大后減小 D. 先減小后增大

      【考點】: 反比例函數圖象上點的坐標特征;矩形的性質.

      【分析】: 設矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周長始終保持不變,則a+b為定值.根據矩形對角線的交點與原點O重合及反比例函數比例系數k的幾何意義可知k= AB AD=ab,再根據a+b一定時,當a=b時,ab最大可知在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減小.

      【解答】: 解:設矩形ABCD中,AB=2a,AD=2B.

      ∵矩形ABCD的周長始終保持不變,

      2(2a+2b)=4(a+b)為定值,

      a+b為定值.

      ∵矩形對角線的交點與原點O重合

      k= AB AD=ab,

      又∵a+b為定值時,當a=b時,ab最大,

      在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減小.

      故選C.

      【點評】: 本題考查了矩形的性質,反比例函數比例系數k的幾何意義及不等式的性質,有一定難度.根據題意得出k= AB AD=ab是解題的關鍵.

      7、(2014年山東泰安第17題)已知函數y=(x﹣m)(x﹣n)(其中m

      A.m+n B m+nC.m-nD.m-n0

      【分析】: 根據二次函數圖象判斷出m﹣1,n=1,然后求出m+n0,再根據一次函數與反比例函數圖象的性質判斷即可.

      【解答】:由圖可知,m﹣1,n=1,所以,m+n0,

      所以,一次函數y=mx+n經過第二四象限,且與y軸相交于點(0,1),

      反比例函數y= 的圖象位于第二四象限,

      縱觀各選項,只有C選項圖形符合.故選C.

      【點評】:本題考查了二次函數圖象,一次函數圖象,反比例函數圖象,觀察二次函數圖象判斷出m、n的取值是解題的關鍵.

      

    【關于中考數學一模函數必做專題試題】相關文章:

    關于對數函數及其性質測試題08-26

    中考一模歷史試卷分析02-10

    函數與反函數關于什么對稱10-12

    督導必做的會議總結范文11-08

    中考二模英語試卷分析總結05-27

    必做三年級下冊語文好漢查理同步練習試題08-10

    2017中考作文指導:看到題目后必做兩件事06-12

    中考英語作文必背例句09-27

    中考標桿英語作文必背09-07

    中考英語必背作文范文02-06

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      日韩精品亚洲日韩精品一区 | 午夜在线播放免费人成年 | 欧美激情一区在线观看 | 中文字幕高清色婷婷视频网 | 日本国产欧美大码A视频 | 亚洲美女牲淫视频片 |