《三角形內角和》教學設計

    時間:2021-04-28 09:36:16 教學設計 我要投稿

    《三角形內角和》教學設計15篇

      作為一名無私奉獻的老師,很有必要精心設計一份教學設計,教學設計是教育技術的組成部分,它的功能在于運用系統方法設計教學過程,使之成為一種具有操作性的程序。那么你有了解過教學設計嗎?以下是小編為大家收集的《三角形內角和》教學設計,歡迎閱讀,希望大家能夠喜歡。

    《三角形內角和》教學設計15篇

    《三角形內角和》教學設計1

      【設計理念】

      新課標重視讓學生經歷數學知識的形成過程,要求教師創設有效的問題情境激發學生的參與欲望,提供足夠的時間和空間讓學生經歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數學問題的活動經驗,發展空間觀念和推理能力。

      【教材內容】新人教版義務教育課程標準實驗教科書四年級下冊數學第67頁例6、“做一做”及練習十六的第1、2、3題。

      【教材分析】

      三角形的內角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。教材很重視知識的探索與發現,安排兩次實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內角和是180°。

      【學情分析】

      1、在學習本課時,學生已經有了探索三角形內角和的知識基礎:知道直角和平角的度數,會用量角器度量角的度數;認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經知道了等腰三角形和正三角形。

     。病⒁呀浻幸徊糠謱W生知道了三角形內角和是180°,只是知其然而不知所以然。

      【教學目標】

      1通過“量、剪、拼”等活動發現、驗證三角形的內角和是180°,并能運用這個知識解決一些簡單的問題。

      2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數學活動經驗,發展空間觀念和推理能力。

      3.在參與數學學習活動的過程中,獲得成功的體驗,感受數學探究的嚴謹與樂趣。

      【教學重點】

      探索發現、驗證“三角形內角和是180°”,并運用這個知識解決實際問題。

      【教學難點】驗證“三角形的內角和是180°”。

      【教(學)具準備】

      多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

      【教學步驟】

      一、復習舊知 引出課題

      1、你已經知道有關三角形的哪些知識?

      2、出示課題:三角形的內角和

      設計意圖:也自然導入新課。

      二、提出問題 引發猜想

      1、提出問題:看到這個課題,你有什么問題想問的?

      預設:(1)三角形的內角指的是哪些角? (2)三角形的內角和是什么意思?

     。3)三角形的內角一共是多少度?

      2、引發猜想

      猜一猜:三角形的內角和是多少度?你是怎么猜的?

      設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內容,無疑激發了學生的學習興趣,培養了學生的問題意識。由于學生在平時使用三角板時已經若隱若現地有了特殊的直角三角形的內角和是180度這一感覺,因此本環節,要求學生猜一猜三角形的內角和是多少,并說說是怎么猜的,以激發學生已有知識經驗,并體會到猜想要合理且有根據,同時也為推理驗證的引出作必要的鋪墊。

      三、操作驗證 形成結論

      1、交流驗證方法:

     。1)用什么方法證明三角形的內角和是180度呢?

      預設: ①量算法 ②剪拼法 ③折拼法等

      (2)三角形的個數有無數個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

      2、動手驗證

      3、全班匯報交流

      4、小結:剛才通過大家的動手操作驗證了三角形的內角和是180 °度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

      5、方法拓展

      推理驗證:用直角三角形的內角和來證明其他三角形內角和是180 °的方法。

      6、形成結論:任意三角形的內角和是180 °。

      設計意圖:《標準》指出:“教師應激發學生的積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗!辈聹y后先獨立思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發現了三角形內角和是180°這個結論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養學生嚴謹、科學正確的研究態度,讓學生在活動中積累基本的數學活動經驗,為后續的學習提供了經驗支撐。

      四、應用結論 解決問題

      1、鞏固新知:想一想,算一算。

      2、解決問題:等腰三角形風箏的頂角是多少度?

      3、辨析訓練,完善結論。

      五、課堂總結,歸納研究方法

      今天這節課你學到了哪些知識?你是怎樣得到這些知識的?

      六、課后延伸:用今天所學的方法繼續研究四邊形的內角和。

      七、板書設計:

      三角形的內角和

      猜測: 三角形的內角和是180°?

      驗證: 量 拼

      結論: 任意三角形的內角和是180°

    《三角形內角和》教學設計2

      教學內容:本節課的教學內容是義務教育課程標準實驗教科書數學四年級下冊第五單位的第四課時《三角形的內角和》,主要內容是:驗證三角形的內角和是180°等。

      教學內容分析:三角形的內角和是180是三角形的一個重要性質,它有助于學生理解三角形的三個內角之間的關系,也是進一步學習的基礎。

      教學對象分析:作為四年級的學生已有一定的生活經驗,在平時的生活中已經接觸到三角形,在尊重學生已有的知識的基礎上和利用他們已掌握的學習方法,教師把課堂教學組織生動、活潑,突出知識性、趣味性和生活性,使學生能在輕松愉快的氣氛中學習。

      教學目標:

      1、知識目標:學生通過量、剪、拼、擺等操作學具活動,找到新舊知識之間的聯系,主動掌握三角形內角和是180°,并運用所學知識解決簡單的實際問題。

      2、能力目標:培養學生的觀察、歸納、概括能力和初步的空間想象力。

      3、情感目標:培養學生的創新意識、探索精神和實踐能力,在學生親自動手和歸納中,感受到理性的美。

      教學重點:理解并掌握三角形的內角和是180°。

      教學難點:驗證所有三角形的內角之和都是180°。

      教具準備:多媒體課件、各種三角形等。

      學具準備:三角形、剪刀、量角器等。

      教學過程:

      一、出示課題,復習舊知

      1、認識三角形的內角。

     。ǎ保⿵土暼切蔚母拍。

      (2)介紹三角形的“內角”。

      2、理解三角形的內角“和”。

      【設計理念】通過復習三角形的概念的過程,不僅可以鞏固學生的舊知識而且可以為新知識教學提供知識鋪墊。

      二、動手操作,探究新知

      1、通過預習,認識結論,提出疑問

      2、驗證三角形的內角和

      (1)用“量一量、算一算”的方法進行驗證

     、賲R報測量結果

      ②產生疑問:為什么結果不統一?

     、劢鉀Q疑問:因為存在測量誤差。

      (2)用“剪一剪、拼一拼”的方法進行驗證

      ①指導剪法。

     、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。

      ③驗證得出:三角形的內角和是180°。

     。3)用“折一折”的方法進行驗證

     、僦笇д鄯。

     、俜謩e折:銳角三角形、直角三角形、鈍角三角形。

     、墼俅悟炞C得出:三角形的內角和是180°。

      3、看書質疑

      【設計理念】此過程采用直觀教學手段。通過讓學生動手量、拼等直觀演示操作直接作用于學生的感官,激活學生的思維,有助于學生的認識由具體到抽象的轉化。從而明確三角形的內角和是180°。

      三、實踐應用,解決問題:

      1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數。

      2、求出三角形各個角的度數。(圖略)

      3、爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是

      70°,它的頂角是多少度?

      4、根據三角形的內角和是180°,你能求出下面的四邊形和正六邊形的內角和嗎?(圖略)

      5、數學游戲。

      【設計理念】練習設計的優化是優化教學過程的一個重要方向,所以在新授后的鞏固練習中注意設計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學生牢固掌握新知。

      四、總結全課、延伸知識:

      1、今天你們學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎樣?

      2、知識延伸:給學生介紹一種更科學的驗證方法——轉化。

      【設計理念】課堂總結不僅要關注學生學會了什么,更要關注用什么方法學,要有意識的促進學生反思。

      板書設計: 三角形的內角和是180°

      方法:①量一量 拼角(略)

     、谄匆黄

     、壅垡徽

      【設計理念】此板書設計我力求簡明扼要、布局合理、條理分明,體現了簡潔美和形象美,把知識的重點充分地展現在學生的眼前,起了畫龍點睛的作用。

    《三角形內角和》教學設計3

      設計思路

      本節課我先引導學生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發現:各類三角形的三個內角都可以拼成一個平角。再引導學生通過折角的方法也發現這個結論,由此獲得三角形的內角和是180°的結論。概念的形成沒有直接給出結論,而是通過量、算、拼、折等活動,讓學生探索、實驗、發現、推理歸納出三角形的內角和是180°。

      最后讓學生運用結論解決實際問題,練習的安排上,注意練習層次性和趣味性,還設計了開放性的練習,由一個同學出題,其它同學回答。先給出三角形兩個內角的度數,說出另外一個內角,有唯一的答案。給出三角形一個內角,說出其它兩個內角,答案不唯一,可以得出無數個答案。讓學生在游戲中拓展學生思維。

      教學目標

      1、讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

      2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

      3、使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

      教學重點

      讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。

      教學準備

      教具:多媒體課件、用彩色卡紙剪的相同的兩個直角三角形、一個鈍角三角形、一個銳角三角形。

      學具:三角形

      教學過程

      一、引入

      (一)認識三角形的內角及三角形的內角和

      師:我們已經學習了三角形的分類,誰能說說老師手上的是什么三角形?

      師:今天我們來學習新的知識《三角形內角和》,誰能說說哪些角是三角形的內角?(讓學生邊說邊指出來)

      師:那三角形的內角和又是什么意思?(把三角形三個內角的度數合起來就叫三角形的內角和。)

     。ǘ┰O疑,激發學生探究新知的心理

      師:請同學們幫老師畫一個三角形,能做到嗎?(激發學生主動學習的心理)

      生:能。

      師:請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發現問題、探究問題。)

      師:有誰畫出來啦?

      生1:不能畫。

      生2:只能畫兩個直角。

      生3:……

      師:問題出現在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!

     。ń沂久埽擅钜胄轮奶骄浚

      二、動手操作,探究三角形內角和

     。ㄒ唬┎乱徊。

      師:猜一猜三角形的內角和是多少度呢?同桌互相說說自己的看法。

      生1:180°。

      生2:不一定。

      ……

     。ǘ┎僮、驗證三角形內角和是180°。

      1、量一量三角形的內角

      動手量一量自己手中的三角形的內角度數。

      師:所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

      生:可以先量出每個內角的度數,再加起來。

      師:哦,也就是測量計算,是嗎?

      學生匯報結果。

      師:請匯報自己測量的結果。

      生1:180°。

      生2:175°。

      生3:182°。

      ……

      2、拼一拼三角形的內角

      學生操作

      師:沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

      生1:有。

      生2:用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。

      師:怎樣才能把三個內角放在一起呢?(學生操作)

      生:把它們剪下來放在一起。

      師:很好。

      匯報驗證結果。

      師:通過拼合我們得出什么結論?

      生1:銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。

      生2:直角三角形的內角和也是180°。

      生3:鈍角三角形的內角和還是180°。

      課件演示驗證結果。

      師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

      師:我們可以得出一個怎樣的結論?

      生:三角形的內角和是180°。

     。ń處煱鍟喝切蔚膬冉呛褪180°學生齊讀一遍。)

      師:為什么用測量計算的方法不能得到統一的結果呢?

      生1:量的不準。

      生2:有的量角器有誤差。

      師:對,這就是測量的誤差。

      3、折一折三角形的內角

      師:除了量、拼的方法,還有沒有別的方法可以驗證三角形的內角和是180°。

      如果學生說不出來,教師便提示或示范。

      學生操作

      4、小結:三角形的內角和是180°。

      三、解決疑問。

      師:現在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)

      生:因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。

      師:在一個三角形中,有沒有可能有兩個鈍角呢?

      生:不可能。

      師:為什么?

      生:因為兩個銳角和已經超過了180°。

      師:那有沒有可能有兩個銳角呢?

      生:有,在一個三角形中最少有兩個內角是銳角。

      四、應用三角形的內角和解決問題。

      1、下面說法是否正確。

      鈍角三角形的內角和一定大于銳角三角形的內角和。()

      在直角三角形中,兩個銳角的和等于90度。()

      在鈍角三角形中兩個銳角的和大于90度。()

     、芤粋三角形中不可能有兩個鈍角。()

     、萑切沃杏幸粋銳角是60度,那么這個三角形一定是個銳角三角形。()

      2、看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)

      3、游戲鞏固。

      由一個同學出題,其它同學回答。

     。1)給出三角形兩個內角,說出另外一個內角(有唯一的答案)。

      (2)給出三角形一個內角,說出其它兩個內角(答案不唯一,可以得出無數個答案)。

      4、根據所學的知識算出四邊形、正五邊形、正六邊形的內角和。

      五、全課總結。

      今天你學到了哪些知識?是怎樣獲取這些知識的?你感覺學得怎么樣?

      反思:

      在本節課的學習活動過程中,先讓學生進行測量、計算,但得不到統一的結果,再引導學生用把三個角拼在一起得到一個平角進行驗證。這時,有部分學生在拼湊的過程中出現了困難,花費的時間較長,在這里用課件再演示一遍正好解決了這個問題。再引導學生用折三角形的方法也能驗證三角形的內角和是180°。練習設計也具有許多優點,注意到練習的梯度,并由淺入深,照顧到不同層次學生的需求,也很有趣味性。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創設問題情境,讓學生去實驗、去發現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發展空間觀念和推理能力。

      但因為是借班上課,對學生了解不多,學生前面的內容(三角形的特性和分類)還沒學好,所以有些練習學生就沒有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學生掌握比較困難。

    《三角形內角和》教學設計4

      教學內容:

      義務教育課程表準教科書數學(人教版)四年級下冊85頁.例題5.

      教學目標:

      1.讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

      2.讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

      3.使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

      教學重點:

      讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。

      教學準備:

      多媒體課件、學具。

      教學過程:

      一、激趣引入

      (一)認識三角形內角

      1.我們已經認識了三角形,什么是三角形?誰能說三角形按角分類,可以分成哪幾類?(學生回答問題.)

      2.請看屏幕(課件演示三條線段圍成三角形的過程)。

      三條線段圍成三角形后,在三角形內形成了三個角,(課件分別出現三個角的弧線),我們把三角形里面的這三個角分別叫做三角形的內角。

      (二)設疑,激發學生探究新知的心理

      1.請同學們幫老師畫一個三角形,能做到嗎?(激發學生主動學習的心理)請聽要求,畫一個有兩個內角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發現問題、探究問題。)

      學生安要求畫三角形.

      2.問:有誰畫出來啦?

      (課件演示):是不是畫成這個樣子了?只能畫兩個直角。問題出現在哪兒呢?這一定有什么奧秘?那就讓我們一起來研究吧!

      二、動手操作,探究新知

      (一)研究特殊三角形的內角和

      1.請看屏幕。(播放課件)熟悉這副三角板嗎?(課件閃動其中的一塊三角板)

      學生回答:90°、45°、45°。(課件演示:由三角板抽象出三角形)

      這個三角形各角的度數。它們的和是多少?

      學生回答:是180°。

      追問:你是怎樣知道的?

      生:90°+45°+45°=180°。

      把三角形三個內角的度數合起來就叫三角形的內角和。

      板題:三角形內角和

      2.(課件演示另一塊三角板的各角的度數。)這個呢?它的內角和是多少度呢?

      90°+60°+30°=180°。

      3.從剛才兩個三角形內角和的計算中,你發現什么?

      這兩個三角形的內角和都是180°。這兩個三角形都是直角三角形,并且是特殊的三角形。

      (二)研究一般三角形內角和

      1.猜一猜。

      猜一猜其它三角形的內角和是多少度呢?同桌互相說說自己的看法。

      2.操作、驗證一般三角形內角和是180°。

      (1)小組合作、進行探究。

      1.所有三角形的內角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?那就請四人小組共同研究吧!

      2.每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,小組活動的要求如下:課件顯示

      組長負責填寫表格,組員每人負責量一個三角形的每個內角,并記錄下來,最后算出這個三角形的內角和,把結果告訴組長.

      量一量,完成表格.

      三角形的名稱

      內角和的度數

      銳角三角形

      直角三角形

      (2)小組匯報結果。

      請各小組匯報探究結果。

      (三)繼續探究

      沒有得到統一的結果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?

      引導學生用拼合的辦法,就是把三角形的三個內角放在一起,可以拼成一個平角。

      1.用拼合的方法驗證。

      小組內完成,活動的要求同上.

      拼一拼,完成表格.

      三角形的名稱

      是否可以拼成平角

      銳角三角形

      直角三角形

      對角三角形

      2.匯報驗證結果。

      先驗證銳角三角形,我們得出什么結論?

      (銳角三角形的內角拼在一起是一個平角,所以銳角三角形的內角和是180°。

      直角三角形的內角和也是180°。

      鈍角三角形的內角和還是180°)。

      3.課件演示驗證結果。

      請看屏幕,老師也來驗證一下,是不是跟你們得到的結果一樣?(播放課件)

      我們可以得出一個怎樣的結論?

      (三角形的內角和是180°。)

      (教師板書:三角形的內角和是180°學生齊讀一遍。)

      為什么用測量計算的方法不能得到統一的結果呢?

      (量的不準。有的量角器有誤差。)

      三、解決疑問。

      現在誰能說說不能畫出有兩個直角的一個三角形的原因?(讓學生體驗成功的喜悅)

      (因為三角形的內角和是180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)

      在一個三角形中,有沒有可能有兩個鈍角呢?

      (不可能。)

      追問:為什么?

      (因為兩個銳角和已經超過了180°。)

      問:那有沒有可能有兩個銳角呢?

      (有,在一個三角形中最少有兩個內角是銳角。)

      四、應用三角形的內角和解決問題。

      1.看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)

      2.85頁做一做:

      在一個三角形中,∠1=140度,∠3=35度,求∠2的度數.

      3.88頁第9.10題(數學信息較為隱藏和生活中的實際問題)

      4.89頁16題.思考題

      板書設計:

      三角形內角和

      180°180°180°

      三角形內角和180°

    《三角形內角和》教學設計5

      【教學內容】

      《人教版九年義務教育教科書 數學》四年級下冊《三角形的內角和》

      【教學目標】

      1.使學生知道三角形的內角和是180 ,并能運用三角形的內角和是180 解決生活中常見的問題。

      2.讓學生經歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內角和是180 。

      3.培養學生自主學習、互動交流、合作探究的能力和習慣,培養學習數學的興趣,感受學習數學的樂趣。

      【教學重點】

      使學生知道三角形的內角和是180 ,并能運用它解決生活中常見的問題。

      【教學難點】

      通過多種方法驗證三角形的內角和是180 。

      【教學準備】

      課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾。

      【教學過程】

      一、激趣導入,提煉學習方法

      1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規則的白紙,以一位老木匠的身份出現在學生面前。激發學生的好奇心。然后自述:“你們好,我是一個有三十多年工作經驗的老木匠了。我收了三個徒弟,他們已經從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”

      2.繼續以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

      3.選擇工具,總結方法。

      讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。

      師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。

      4.導入新課。

      圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內角的和是多少?(板書課題:三角形的內角和)

      二、動手操作,探索交流新知

      1.分組活動,探索新知

      根據學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

      量一量組同學發給以下幾種學具:

      折一折組同學發給上面的三角形一組。

      拼一拼組同學發給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

      在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。

      2.多方互動,交流新知

      師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。

      (1)首先要求學生說一說你們小組是怎樣進行探究的。

      (2)說出你們組的探究結果怎樣。(在此過程中教師不能急于糾正學生不正確的結論,因為這是知識的形成過程。)

      (3)請學生說說通過探究活動你們組得出的結論是什么。

      師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?

      引導這一組從探究的過程和結論與同學、老師交流。

      師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵戆涯銈兊姆椒ńo大家匯報匯報。

      同樣引導這一組從探究的過程和結論與同學、老師交流。

      3.思想碰撞,夯實新知

      師:三個徒弟你們能說說誰的方法最好嗎?

      學生都會說自己的方法最好,再讓其他同學發表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)

      師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內角和就是180 。(板書:三角形的內角和是180 )

      四、走進生活,提升運用能力

      1.出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?

      2.給你三根木條,能做出一個有兩個直角的三角形嗎?

      五、總結

      師:徒弟們你們經過三年的苦學,終于學有所成了。今天,能說說你們在我這里都學到了什么手藝嗎?

      六、拓展新知,課外延伸

      師:俗話說“活到老,學到老!蹦銈兿律胶筮要繼續探索,所以我要把我畢生都沒有完成的任務交給你們去研究。

      大屏幕出示:

      能用你今天學過的知識和方法探索一下四邊形的內角和是多少度嗎?

    《三角形內角和》教學設計6

      【教學目標】

      1、學生動手操作,通過量、剪、拼、折的方法,探索并發現“三角形內角和等于180度”的規律。

      2、在探究過程中,經歷知識產生、發展和變化的過程,通過交流、比較,培養策略意識和初步的空間思維能力。

      3、體驗探究的過程和方法,感受思維提升的過程,激發求知欲和探索興趣。

      【教學重點】探究發現和驗證“三角形的內角和180度”這一規律的過程,并歸納總結出規律。

      【教學難點】對不同探究方法的指導和學生對規律的靈活應用。

      【教具準備】課件、表格、學生準備不同類型的三角形各一個,量角器。

      【教學過程】

      一、激趣引入。

      1、猜謎語

      師:同學們喜歡猜謎語嗎?

      生:喜歡。

      師:那么,下面老師給大家出個謎語。請聽謎面:

      形狀似座山,穩定性能堅,三竿首尾連,學問不簡單。(打一圖形)大家一起說是什么?

      生:三角形

      2、介紹三角形按角的分類

      師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

      師分別出示卡片貼于黑板。

      3、激發學生探知心里

      師:大家會不會畫三角形啊?

      生:會

      師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

      生:試著畫

      師:畫出來沒有?

      生:沒有

      師:畫不出來了,是嗎?

      生:是

      師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節課我們就來學習有關三角形角的知識“三角形內角和”(板書課題)

      二、探究新知。

      1、認識三角形的內角

      看看這三個字,說說看,什么是三角形的內角?

      生:就是三角形里面的角。

      師:三角形有幾個內角?

      生:3個。

      師:那么為了研究的時候比較方便,我們把這三個內角標上角1角2角3,請同學們也拿出桌子上三角形標出(教師標出)

      師:你知道什么是三角形“內角和”嗎?

      生:三角形里面的角加起來的度數。

      2、研究特殊三角形的內角和

      師:分別拿出一個直角三角板,請同學們看看這屬于什么三角形,說出每個角的度數,那這個三角形的內角和是多少度?

      生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

      師:180°也是我們學習過的什么角?

      生:平角

      師:從剛才兩個三角形的內角和的計算中,你發現了什么?

      3、研究一般三角形的內角和

      師:猜一猜,其它三角形的內角和是多少度呢?

      生:

      4、操作、驗證

      師:同學們猜的結果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

      要求:

     。1)每4人為一個小組。

     。2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務?

     。3)驗證的方法不只一種,同學們要多動動腦子。

      師:好,開始活動!

      師:巡視指導

      師:好!請一組匯報測量結果。

      生:通過測量我們發現每個三角形的三個內角和都在180度左右。

      師:其實三角形的內角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結果不準確。

      生:我是用撕的方法,把直角三角形三個內角撕下來,拼在一起,拼成一個平角,是180度。

      師:好!非常好!

      師:有其它同學操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

      生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。

      師:老師也做了一個實驗看一看是不是和大家得到結果一樣呢?(多媒體展示)

      現在老師問同學們,三角形的內角和是多少?

      生:180度。

      師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內角和都是180°。板書:三角形內角和等于180度,F在讓我們用自豪的、肯定的語氣讀出我們的發現:“三角形的內角和是180°”。

      三、解決疑問

      師:好!請同學們回憶一下,剛才課前老師讓同學們畫出有兩個直角的三角形畫出來了嗎?

      生:沒有

      師:那你能用這節課的知識解釋一下為什么畫不出來嗎?

      生:兩個直角是180度,沒有第三個角了。

      師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

      生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

      師:學會了知識,我們就要懂得去運用。

      四、鞏固提高。

      1、填空。

     。1)三角形的內角和是()度。

     。2)一個三角形的兩個內角分別是80°和75°,它的另一個角是()。

      2、求下面各角的度數。

     。1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

     。2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

      3、判斷每組中的三個角是不是同一個三角形中的三個內角。

      (1)80° 95° 5°( )

      (2)60° 70° 90°( )

     。3)30° 40° 50°( )

      4、紅領巾是一個等腰三角形,求底角的度數。(多媒體出示)

      對學生進行思品教育。

      5、思考延伸。

      根據三角形內角和是180度,算一算四邊形和八邊形的內角和是多少?

      6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

      五、總結。

    《三角形內角和》教學設計7

      一、教學目標

      1.知識目標:通過測量、撕拼(剪拼)、折疊等方法,探索和發現三角形三個內角的度數和等于180°這一規律,并能實際應用。

      2.能力目標:培養學生主動探索、動手操作的能力。使學生養成良好的合作習慣。

      3.情感目標:讓學生體會幾何圖形內在的結構美。并充分體會到學習數學的快樂。

      二、教學過程

     。ㄒ唬﹦撛O情境,導入新課

      1、師:我們已經認識了三角形,你知道哪些關于三角形的知識?

      (學生暢所欲言。)

      2、師:我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!

      師口述:一個大的直角三角形說:“我的個頭大,我的內角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”,

      3、到底誰說的對呢?今天我們就來研究有關三角形內角和的知識。(板書課題:三角形內角和)

      (二)自主探究,發現規律

      1、認識什么是三角形的內角和。

      師:你知道什么是三角形的內角和嗎?

      通過學生討論,得出三角形的內角和就是三角形三個內角的度數和。

      2、探究三角形內角和的特點。

      ①讓學生想一想、說一說怎樣才能知道三角形的內角和?

      學生會想到量一量每個三角形的內角,再相加的方法來得到三角形的內角和。(如果學生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進行)

     、谛〗M合作。

      通過小組合作后交流,匯報。(教師同時板書出幾個小組匯報的結果)讓學生們發現每個三角形的內角和都在180°左右。

      引導學生推測出三角形的內角和可能都是180°。

      3、驗證推測。

      讓學生動腦筋想一想,怎樣才能驗證自己的推想是否正確,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。

     。ㄐ〗M合作驗證,教師參與其中。)

      4、全班交流,共同發現規律。

      當學生匯報用折拼或剪拼的方法的時候,指名學生上黑板展示結果。

      學生交流、師生共同總結出三角形的內角和等于180°。教師同時板書(三角形內角和等于180°。)

      5、師談話:三個三角形討論的問題現在能解決了嗎?你現在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內角和是180°做系統的整理。)

     。ㄈ╈柟叹毩暎卣箲

      根據發現的三角形的`新知識來解決問題。

      1、完成“試一試”

      讓學生獨立完成后,集體交流。

      2、游戲:選度數,組三角形。

      請選出三個角的度數來組成一個三角形。

      150°10°15°18°20°32°

      35°50°52°54°56°58°

      130°70°72°75°60°

      學生回答的同時,教師操作課件,把學生選擇的度數拖入方框內,通過電腦計算相加是否等于180°,來驗證學生的選擇是否正確。驗證學生選的對了以后,再讓學生判斷選擇的度數所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。

      3、“想想做做”第1題

      生獨立完成,集體訂正,并說說解題方法。

      4、“想想做做”第2題

      提問:為什么兩個三角形拼成一個三角形后,內角和還是180度?

      5、“想想做做”第3題

      生動手折折看,填空。

      提問:三角形的內角和與三角形的大小有關系嗎?三角形越大,內角和也越大嗎?

      6、“想想做做”第5題

      生獨立完成,說說不同的解題方法。

      7、“想想做做”第6題

      學生說說自己的想法。

      8、思考題

      教師拿一個大三角形,提問學生內角和是多少?用剪刀剪成兩個三角形,提問學生內角和是多少?為什么?再剪下一個小三角形,提問學生內角和是多少?為什么?最后建成一個四邊形,提問學生內角和是多少?你能推導

      出四邊形的內角和公式嗎?

     。ㄋ模┱n堂總結

      本節課我們學習了哪些內容?(生自由說),同學們說得真好,我們要勇于從事實中尋找規律,再將規律運用到實踐當中去。

      三教后反思:

      “三角形的內角和”是小學數學教材第八冊“認識圖形”這一單元中的一個內容。通過鉆研教材,研究學情和學法,與同組老師交流,我將本課的教學目標確定為:

      1、通過測量、撕拼、折疊等方法,探索和發現三角形三個內角的度數和等于180度。

      2、已知三角形兩個角的度數,會求出第三個角的度數。

      本節教學是在學生在學習“認識三角形”的基礎上進行的,“三角形內角和等于180度”這一結論學生早知曉,但為什么三角形內角和會一樣?這也正是本節課要與學生共同研究的問題。所以我將這節課教學的重難點設定為:通過動手操作驗證三角形的內角和是180°。教學方法主要采用了實驗法和演示法。學生的折、拼、剪等實踐活動,讓學生找到了自己的驗證方法,使他們體驗了成功,也學會了學習。下面結合自己的教學,談幾點體會。

      (一)創設情景,激發興趣

      俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據教學內容和學生實際,精心設計每一節課的開頭導語,用別出心裁的導語來激發學生的學習興趣,讓學生主動地投入學習。本節課先創設畫角質疑的情景,當學生畫不出來含有兩個直角的三角形時,學生想說為什么又不知怎么說,學生探究的興趣因此而油然而生。

     。ǘ┙o學生空間,讓他們自主探究

      “給學生一些權利,讓他們自己選擇;給學生一個條件,讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓他們自己飛翔。”我記不清這是誰說過的話,但它給我留下深刻的印象。它正是新課改中學生主體性的表現,是以人為本新理念的體現。所以在本節課中我注重創設有助于學生自主探究的機會,通過“想辦法驗證三角形內角和是180度”這一核心問題,引發學生去思考、去探究。我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪等活動找到自己的驗證方法。學生拿著他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發現的樂趣。這樣,學生在經歷“再創造”的過程中,完成了對新知識的構建和創造。

     。ㄈ┮詫W定教,注重教學的有效性

      新課表指出:數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上。要把學生的個人知識、直接經驗和現實世界作為數學教學的重要資源,即以學定教,注重每個教學環節的有效性。本課中當我提出“為什么一個三角形中不能有兩個角是直角”時,有學生指出如果有兩個直角,它就拼不成了一個三角形;也有學生說如果有兩個直角,它就趨向于長方形或正方形。“為什么會這樣呢”?學生沉默片刻后,忽然有個學生舉手了:“因為三角形的內角和是180度,兩個直角已經有180度了,所以不可能有兩個角是直角!边@樣的回答把本來設計的教學環節打亂了,此時我靈機把問題拋給學生,“你們理解他說的話嗎、你怎么知道內角和是180度、誰都知道三角形的內角和是180度”等,當我看到大多數的已經知道這一知識時,我就把學生直接引向主題“想不想自己研究證明一下三角形的內角和是不是180度!奔ぐl了學生探究的興趣,使學生馬上投入到探究之中。

      在練習的時候,由于形式多樣,所以學生的興趣非常高漲,效果很好。通過多邊形內角和的思考以及驗證,發展了學生的空間想象力,使課堂的知識得以延伸。<

    《三角形內角和》教學設計8

      一、說教材

      北師版八年級下冊第六章《證明一》,是在前面對幾何結論已經有了一定的直觀認識的基礎上編排的,而前幾冊對有關幾何結論都曾進行過簡單的說理,本章內容則嚴格給出這些結論的證明,并要求學生掌握證明的一般步驟及書寫表達格式!度切蝺冉呛投ɡ淼淖C明》則是對前幾節證明的自然延續。此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎。

      二、說目標

      1.知識目標:掌握“三角形內角和定理的證明”及其簡單的應用。

      2.能力目標培養學生的數學語言表達、邏輯推理、問題思考、組內及組間交流、動手實踐等能力。

      3.情感、態度、價值觀:

      在良好的師生關系下,建立輕松的學習氛圍,使學生體會獲得知識的成就感及與他人合作的樂趣,以增強其數學學習的自信心。

      4.教學重點、難點

      重點:三角形的內角和定理的證明及其簡單應用。

      難點:三角形的內角和定理的證明方法的討論。

      三、說學校及學生現實情況

      我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學校有遠程多媒體網絡教室,為師生提供了良好的學習硬件環境。我校學生幾乎全部來自本鎮農村,而我所教授的八年級四班學生,大多家庭貧苦,所以學習認真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。

      四、說教法

      根據本節課教學內容特點,我采用啟發、引導、探索相結合的教學方法,使學生充分發揮學習主動性、創造性。

      五、說教學設計

      〈一〉、創設情景,直入主題

      一堂新課的引入是教師與學生活動的開始,而一個成功的引入,可使學生破除畏難心理,對知識在短時間內產生濃厚的興趣,接下來的教學活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學生輕松做答,我肯定之后緊接著說:“本節課就是用證明的方法學習一個熟悉的結論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學生投入新課。

      〈二〉、交流對話,引導探索

      1、巧妙提問,合理引導

      證明思想的引入時,問:同學們,七年級時如何得到此結論?(留一定時間讓他們討論、交流、達成共識)學生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發了學生的學習興趣。接下來學生做題,我巡視。同時讓一學生板演。

      2、恰當示范,培養學生正確的書寫能力

      在學生做完之后,我與他們一道分析板演同學證明是否合理,并利用多媒體給出正確書寫方法。

      3、一題多解,放手讓學生走進自主學習空間

      正因為學生的預習,所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學生思考,繼而熱烈討論,此時,我又走到學生中去,對有困難的學生多加關注和指導,不放棄任何一個,同時,借此機會增進教師與學困生之間的情誼,為繼續學習奠定基礎。最后,請有新方法的同學敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

      4、展示歸納,合理演繹

      利用多媒體展示三角形內角和定理的幾種表達形式,以促其學以致用。

      5、反饋練習

      用隨堂練習來鞏固學生所學新知,另一方面進一步提高學生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學效果。

      〈三〉、課堂小結

      1 采用讓學生感性的談認識,談收獲。設計問題:

      2(1)、本節課我們學了什么知識?

     。2)、你有什么收獲?

      目的是發揮學生主體意識,培養其語言概括能力。

      六、說教學反思

      本節課主要是以嚴謹的邏輯證明方法,驗證三角形內角和等于180度。讓學生充分體會有理有據的推理才是可靠的。而證明思想、書寫的培養,是本節課的重點。自主學習、合作交流是新課程理念,也是我本節課的設計意圖。從學生課堂表現可以看出,教學效果良好。而學生的一些出乎意料的做法讓我倍感驚喜!把學生還給課堂,把課堂還給學生,也是我一貫的做法。

    《三角形內角和》教學設計9

      教學要求

      1、通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。

      2、能運用三角形的內角和是180°這一規律,求三角形中未知角的度數。

      3、培養學生動手動腦及分析推理能力。

      教學重點

      三角形的內角和是180°的規律。

      教學難點

      使學生理解三角形的內角和是180°這一規律。

      教學用具

      每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

      教學過程:

      一、出示預習提綱

      1、三角形按角的不同可以分成哪幾類?

      2、一個平角是多少度?1個平角等于幾個直角?

      3、如圖,已知∠1=35°,∠2=75°,求∠3的度數。

      二、展示匯報交流

      1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內角。(板書:內角)

      2、三角形三個內角的度數和叫做三角形的內角和。(板書課題:三角形的內角和)今天我們一起來研究三角形的內角和有什么規律。

      3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內角的和各是多少度?

      4、指名學生匯報各組度量和計算的結果。你有什么發現?

      5、大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

      6、剛才我們計算三角形的內角和都是先測量每個角的度數再相加的。在量每個內角度數時只要有一點誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

      提示學生,可以把三個內角拼成一個角,就只需測量一次了。

      7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

      8、三個角拼在一起組成了一個什么角?我們可以得出什么結論?(直角三角形的內角和是180°)

      9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發現了什么?(直角三角形和鈍角三角形的內角和也是180°)

      10、那么,我們能不能說所有三角形的內角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結論:三角形的內角和是180°。

      12、一個三角形中如果知道了兩個內角的度數,你能求出另一個角是多少度嗎?怎樣求?

      13、出示教材85頁做一做。讓學生試做。

      14、指名匯報怎樣列式計算的。兩種方法均可。

      ∠2=180°—140°—25°=15°

      ∠2=180°(140°+25°)=15°

      課后反思:

      對于三角形的內角和,學生并不陌生,在平時的做題中已經涉及到了?墒菍W生并不知道如何去驗證,所以本節課,重點讓孩子們經歷體驗,感悟圖形。從而收獲了經驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

    《三角形內角和》教學設計10

      課題

      三角形的內角和

      

      教學目標

      1.讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

      2.在學生在動手獲取知識的過程中,培養學生的實踐能力,并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

      3.使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

      重點難點

      重點:讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用過程。

      難點:探索、驗證三角形內角和是180°的過程。

      過程

      

      體驗目標

      “學”與“教”

      創設問題情境

      課件出示:兩個三角板

      遵循由特殊到一般的規律進行探究,引發學生的猜想后,引導學生探討所有的三角形的內角和是不是也是180°。

      這是同學們熟悉的三角尺,請同學們說一說這兩個三角尺的三個內角分別是多少度?

      生: 45°、90°、45°。

      生: 30°、90°、60°。

      師:仔細觀察,算一算這兩個三角形的內角和是多少度?

      生:90°+45°+45°=180°。

      生:90°+60°+30°=180°。

      師:通過剛才的算一算,我們得到這兩個三角形的內角和是180°,由此你想到了什么?

      生:直角三角形內角和是180°,銳角三角形、鈍角三角形內角和也是180°。

      師:這只是我們的一種猜想,三角形的內角和是否真的等于180°,還需要我們去驗證。

      構建

      模型

      每個組準備六個三角形(銳角三角形2個、直角三角形2個、鈍角三角形2個)

      課件

      學生自己剪的一個任意三角形

      大膽放手讓學生通過有層次的自主操作活動,幫助學生結合已有的知識經驗,探究驗證三角形內角和的不同方法。

      讓學生在經歷“提出猜想—實驗驗證—得出結論”中感悟、體驗知識的形成過程,將“三角形內角和是180°”一點一滴,浸入學生大腦,融入已有認知結構。

      這一系列活動同時還潛移默化地向學生滲透了“轉化”的數學思想,為后繼學習奠定了必要的基礎。

      師:之前老師為每個同學準備了①-⑥六個三角形,下面請組長分發給每個三角形,拿到手后,先別著急,先想一想你準備用什么方法去驗證三角形內角和?

      學生動手操作驗證

      師:匯報時,請先說一說是幾號三角形?然后說一說這個三角形是什么三角形?

      學生匯報:

      生1:③號三角形是直角三角形,內角和是180°。

      生2:②號三角形是銳角三角形,內角和是180°。

      生3:⑤號三角形是鈍角三角形,內角和是180°。

      生4:④號三角形是直角三角形,內角和是180°。

      生5:①號三角形是鈍角三角形,內角和是180°。

      生6:⑥號三角形是銳角三角形,內角和是180°。

      師:除了量的方法外,還有其他方法驗證三角形內角和嗎?

      生1:分別剪下三角形三個角拼成平角,平角是180°,所以推理得出三角形內角和是180°。

      生2:分別撕下三角形三個角拼成平角,平角是180°,所以推理得出三角形內角和是180°。

      生3:把三角形的三個角折成平角,平角是180°,所以推理得出三角形內角和是180°。

      這些方法都驗證了:三角形的內角和是180°。

      師:觀察這些三角形的內角和是多少度?這些三角形的內角和都是180°,這是不是老師故意安排好的呢?

      師:有沒有人質疑,用什么方法驗證?

      生用自己剪的任意三角形再次驗證三角形內角和是否180°。

      生:得出內角和還是180°。

      師:不管是老師提供的三角形,還是你們自己準備的三角形,通過我們的算一算、拼一拼、折一折,都得出了三角形的內角和是180°。

      師:我們已經學習了三角形的分類,三角形可以分成銳角三角形、直角三角形、鈍角三角形。這些三角形的內角和是180°,我們能把它們概括成一句話嗎?

      生:三角形的內角和是180°。

      師:看來我們的猜想是正確的。

      師:早在20xx多年前著名數學家歐幾里得就已經得到這個結論,到了初中以后同學們還會用更加嚴密的方法證明三角形的內角和是180°。

      解釋

      運用拓展

      課件

      正方形紙

      讓學生更深的對所學的新知加以鞏固,從而促使學生綜合運用知識,解決問題的能力。同時在練習中發展學生的觀察、歸納、概括能力和初步的空間想象力。

      1.∠1=40°,∠2=48°,求∠3有多少度?

      2.算出下面三角形∠3的度數。

     、拧1=42°,∠2=38°,∠3=?

     、啤1=28°,∠2=62°,∠3=?

      ⑶∠1=80°,∠2=56°,∠3=?

      師:你是怎樣算的?這三個三角形各是什么三角形?

      提問:在一個三角形中最多有幾個鈍角?

      在一個三角形中最多有幾個直角?

      3.游戲:將準備的正方形紙對折成一個三角形?

      師:這個三角形的內角和是多少度?再對折一次,現在內角和是多少度?如果繼續折下去,越折越小,三角形的內角和會是多少度?

      說明:三角形大小變了,內角和不變。

      4.有兩個完全一樣的三角尺拼成一個三角形,這個三角形的內角和是多少度?

      說明:三角形形狀變了,內角和不變。

      5.根據所學知識,你能想辦法求出下面圖形的內角和嗎?

      板書

      設計

      三角形內角和

     、偬 鈍角三角形 內角和180°

     、谔 銳角三角形 內角和180°

      三角形內角和是180°

     、厶 直角三角形 內角和180°

      ④號 直角三角形 內角和180°

      ⑤號 鈍角三角形 內角和180°

     、尢 銳角三角形 內角和180°

      學具教具準備

      課件三角形紙片量角器正方形紙

    《三角形內角和》教學設計11

      教學目標:

      1、讓學生通過量、剪、拼、折等活動,主動探究推導出三角形內角和是180度,并運用所學知識解決簡單的實際問題。

      2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透"轉化"數學思想。

      3、在學生親自動手和歸納中,使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

      教學重點:

      讓學生經歷"三角形內角和是180°"這一知識的形成、發展和應用的全過程。

      教學難點:

      通過小組內量一量、折一折、撕一撕等活動,驗證"三角形的內角和是180°。"

      教師準備:

      4組學具、課件

      學生準備:

      量角器、練習本

      教學過程:

      一、興趣導入,揭示課題

      1、導入:"同學們,這幾天我們都在研究什么知識?能說說你們都認識了哪些三角形嗎?它們各有什么特點?"

     。ㄉ鍪救切尾R報各類三角形及特點)

      2、今天老師也帶來了兩個三角形,想不想看看?(播放大屏幕)。"咦,不好,它們怎么吵起來了?快聽聽它們為什么吵起來了?""哦,它們為了三個內角和的大小而吵起來。"(設置矛盾,使學生在矛盾中去發現問題、探究問題。)

      3、我們來幫幫它們好嗎?

      4、那么什么叫內角啊?你們明白嗎?誰來說說?來指指。

      你能標出三角形的三個角嗎?(生快速標好)

      數學中把三角形的這三個角稱為三角形的內角,三個內角加起來就叫內角和。這節課我們就來研究一下"三角形的內角和"(課件片頭1)

      "同學們,用什么方法能知道三角形的內角和?"

      二、猜想驗證,探究規律 (動手操作,探究新知)

      1.量角求和法證明:

      先聽合作要求:拿出準備的一大一小的兩個三角形,現在我們以小組為單位來量一量它們的內角,注意分工:最好兩個人 量,一人記錄,一人計算,看哪一小組完成的好?

     。1)學生聽合作要求后分組合作,將各種三角形的內角和計算出來并填在小組活動記錄表中。(觀察哪組配合好)。

      (2)指名匯報各組度量和計算內角和的結果。

     。3)觀察:從大家量、算的結果中,你發現什么?

      歸納:大家算出的三角形內角和都等于或接近180°。

     。5)思考、討論:

      通過測量計算,我們發現三角形的內角和不一定等于180度,因為是測量所以能有誤差,那么還有更好的方法能驗證呢?

      大家討論討論。

      現在各小組就行動起來吧,看哪些小組的方法巧妙?纯茨艿贸鍪裁唇Y論?

      看同學們拼得這樣開心,老師也想拼拼,行嗎?演示課件。

      看老師最終把三個角拼成了一個什么角?平角。是多少角?

      "180°是一個什么角?想一想,怎樣可以把三角形的三個內角拼在一起?如果拼成一個180 度的平角就可以驗證這個結論,對嗎?"(課件3)

      現在,我們可驗證三角形的內角和是(180度)?

      2、那么對任意三角形都是這個結論?請看大屏幕。

      演示銳角三角形折角。 (三個頂點重合后是一個平角,折好后是一個長方形。)

      你們想不想去試一試。

      1、小組探究活動,師巡視過程中加入探究、指導(如生有困難,師可引導、有可能出現折不到一起的情況,可演示以幫助學生)

      2、"你通過哪種三角形驗證(鈍角、銳角、直角逐一匯報)",生邊出示三角形邊匯報。(如有實物投影,直接在實物投影上展示最好,也可用大三角形示范,可隨機改變順序)

      a、驗證直角三角形的內角和

      折法1中三個角拼在一起組成了一個什么角?我們可以得出什么結論?

      引導生歸納出:直角三角形的內角和是180°

      折法2 我們還可以得出什么結論?

      引導生歸納出:直角三角形中兩個銳角的和是90°。

     。矗翰槐厝齻角都折,銳角向直角方向折,兩個銳角拼成直角與直角重合即可)

      b、驗證銳角、鈍角三角形的內角和。

      歸納:銳角、鈍角三角形的內角和也是180°。

      放手發動學生獨立完成 ,逐一種類匯報 師給予鼓勵

      三、總結規律

      剛才,我們將直角三角形、銳角三角形、鈍角三角形的三個內角量、剪、撕,能不能給三角形內角下一個結論呢?(生:三角形的內角和是180°)對!不論是哪種三角形,不論大!我們可以得出一個怎樣的結論?

     。ㄈ切蔚膬冉呛褪180°。)

     。ń處煱鍟喝切蔚膬冉呛褪180°學生齊讀一遍。)

      為什么用測量計算的方法不能得到統一的結果呢?

      (量的不準。有的量角器有誤差。)

      老師的大三角形內角和大小三角形內角和大呀?(一樣大)首尾呼應

      四、應用新知,知識升華。

      (讓學生體驗成功的喜悅)

      現在,我們已經知道了三角形的內角和是180°,它又能幫助我們解決那些問題呢?

     。ㄕn件5……)

      在一個三角形中,有沒有可能有兩個鈍角呢?

     。ú豢赡。)

      追問:為什么?

     。ㄒ驗閮蓚銳角和已經超過了180°。)

      有兩個直角的一個三角形

     。ㄒ驗槿切蔚膬冉呛褪180°,在一個三角形中如果有兩個直角,它的內角和就大于180°。)

      問:那有沒有可能有兩個銳角呢?

     。ㄓ,在一個三角形中最少有兩個內角是銳角。)

      1、 看圖求出未知角的度數。(知識的直接運用,數學信息很淺顯)

      2、做一做:

      在一個三角形中,∠1=140度, ∠3=35度,求∠2的度數、

      3、27頁第3題(數學信息較為隱藏和生活中的實際問題)

      4.思考題、

      五、總結

      今天,我們在研究三角形的內角和時經歷了猜想、驗證、得出結論的過程,并且運用這一結論解決了一些問題。人們在進行科學研究中,常常都要經歷這樣的過程,同時,它也是一種科學的研究方法。

      板書設計:

      三角形內角和

      量一量 拼一拼 折一折

      三角形內角和是180°

    《三角形內角和》教學設計12

      【教材內容】

      北京市義務教育課程改革實驗教材(北京版)第九冊數學

      【教材分析】

      《三角形內角和》是北京市義務教育課程改革實驗教材(北京版)第九冊第三單元的內容,屬于空間與圖形的范疇,是在學生已經掌握了三角形的穩定性和三角形的三邊關系相關知識后對三角形的進一步研究,探索三角形的內角和等于180°。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°。讓學生在自主探索中發現三角形的又一特性,更加深入的培養了學生的空間觀念。

      【學生分析】

      在四年級學生已經掌握了角的概念、角的分類和角的度量等知識。在本課之前,學生又掌握了三角形的穩定性研究了三角形的分類。這些都為進一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學作了鋪墊。三角形的內角和是三角形的一個重要性質。它有助于理解三角形的三個內角之間的關系,是進一步學習、研究幾何問題的基礎。

      【教學目標】

      1、通過量、拼、折、剪等方法探索和發現三角形的內角和等于180°掌握并會應用這一規律解決實際的問題。

      2、通過討論、爭辯、操作、推理發展學生動手操作、觀察比較和抽象概括的能力。

      3、使學生掌握由特殊到一般的邏輯思辨方法和先猜想后研究問題的方法。

      【教學重點】

      讓學生經歷“三角形內角和是180度”這一知識的形成發展和應用的全過程。

      【教學難點】

      能利用學到的知識進行合情的推理。

      【教具學具準備】

      課件、各種各樣的直角三角形、長方形、剪刀、量角器、數學紙

      【教學過程】

      一、學具三角板,引入新課

      1、(出示兩個直角三角板),問:這是咱們同學非常熟悉的一種學習工具,是什么呀?(三角板)它們的外形是什么形狀的?(三角形)(課件:抽象出三角形)

      2、顧名思義一個三角形都有幾個角呀?(三個)

      3、認識內角

     。1)在三角形的內部相臨兩條邊之間所夾的角叫做三角形的內角。(課件閃爍∠1)(板書:三角形內角)∠1就叫做三角形的什么?這兩條邊夾的角∠2呢?∠3呢?

      (2)這個三角形內有幾個內角?(三個)這個呢?(三個)

      (設計意圖:由學生最熟悉的三角板引入新課,激發學生興趣的同時為后面的學習做準備)

      二、動手操作,探索新知

      (一)直角三角形內角和

     、、特殊直角三角形內角和

      1、根據我們以往對三角板的了解,你還記得每個三角形上每個內角各是多少度嗎?(生說度數,師課件上在相應角出示度數:①90°、60°、30°,②90°、45°、45°)。

      2、觀察這兩個三角形的度數,你有什么發現?

      生1:都有一個直角,師:那我們就可以說他們是什么三角形?(板書:直角三角形)

      生2:我還發現他們內角加起來是180度。師:他真會觀察,你發現了嗎?快算一算是不是他說的那樣?

     。ㄕn件):(1)90°+60°+30°=180°)

      那么另一個三角板的三個內角的總度數是多少?

     。ㄉ卮,師課件:(2)90°+45°+45°=180)

      3、你指的哪是180度?(生:這三個內角合起來是180度)

      4、在三角形內三個內角的總度數又簡稱為三角形的內角和。(板書:和)

      5、這個直角三角形的內角和是多少度?另一個呢?

      6、你還記得180度是我們學過的是什么角嗎?(平角)趕快在你的數學紙上畫一個平角。

     。◣煶鍪疽粋平角)問:平角是什么樣的?

      7、師述:角的兩邊形成一條直線就是平角。也就是180度,哦,這兩個直角三角形的內角和就組成這樣的一個角呀。

      ⅱ、一般直角三角形內角和

      1、老師還為你們準備了各種各樣的直角三角形,快拿出來看看。

      2、剛才的那兩個直角三角形的內角和是180度,你們手中的直角三角形的內角和是多少度呢?老師還為你們準備了一些學具,你能充分地利用這些學具,想辦法來研究直角三角形的內角和是多少度嗎?下面我們以小組為單位來研究,注意小組同學要明確分工可以一個人填表,另外的人一起動手實驗看一看哪一組想出研究方法最多。

     。1)小組活動(2)匯報

      哪個組愿意把你們的研究成果向大家展示?每個小組派代表發言。(在實物展臺上演示)

      三角形的種類

      驗證方法

      驗證結果

      *“量一量”的方法:

      板書:有一點誤差的度數

      *“剪一剪”的方法:

      我們在剪的時候要注意什么?剪完之后怎樣拼?拼成的是什么?你怎么知道是平角?(提示:可以在我們畫的平角上拼)(課件展示)

      現在我們也用這種方法試一試,看能不能拼成平角?(小組實驗)

      你們的直角三角形的內角和拼成的是平角嗎?也就是內角和是多少度?

      還有其他方法嗎?

      *“折一折”的方法:

      預設:①生:我是折的。師:怎樣折的?你能給大家演示嗎?

      學生演示(課件:折的過程)

     、趯W生沒有說出來,師:你們看老師還有一種方法請看:(課件:折的過程)其實折的方法和剪、撕的道理是一樣的,最后都是把三個內角拼成平角。(板書:折)

      *推理:

      你們有用長方形來研究直角三角形內角和度數的嗎?(課件:長方形)快想一想用長方形怎樣去研究?(課件:長方形驗證的過程)

      這種方法就叫做推理,一般到中學以后我們經常會用到。(板書:推理)

      3、小結

     。1)通過我們剛才的研究,我們發現直角三角形的內角和都是多少度呀?(板書:內角和是180°)剛才我們在測量的時候為什么會出現179度183度呢?看來只要是測量不可避免的會產生誤差。

      (2)在我們三角形的世界中,是只有直角三角形嗎?還有什么?(板書:銳角三角形、鈍角三角形)

     。ㄔO計意圖:引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。)

      (二)、銳角三角形、鈍角三角形的內角和

      1、請你們任意畫一個鈍角三角形,一個銳角三角形

      2、直角三角形的內角和是180度,銳角三角形、鈍角三角形的內角和又是多少度呢?你能利用我們剛才學到的知識來研究你所畫的三角形的內角和是多少度嗎?快試試,可以同桌討論。(學生操作,匯報,課件演示)我們是用什么方法來研究的?

      3、學生模仿老師操作說理

      4、由此我們得到了銳角三角形的內角和是多少度?鈍角三角形的內角和呢?我們就可以說所有三角形的內角和都是180度。

      師:這也是三角形的一個特性,現在你對三角形的這一特性有疑問嗎?如果沒有的話請你用自信、肯定的語氣讀一讀(板書:三角形的內角和是180°)。

     。ㄔO計意圖:引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。)

      三、鞏固新知,拓展應用

      我們就用三角形的這一特性來解決一些問題

      1、兩個三角形拼成大三角形

     。1)每個三角形的內角和都是少度?

      (2)(課件把兩個三角形拼在一起)它的內角和是多少度?(這時學生答案又出現了180°和360°兩種。)師:究竟誰對呢

      2、一個三角形去掉一部分

     。1)這是一個三角形,他的內角和是多少度?我從中剪去一個三角形他的內角和是多少度?

      再剪去一個三角形呢?(課件演示)

      你們看這兩個三角形他們的大小、形狀都怎么樣?但內角和都是180度,看來三角形的內角和的度數和他的大小形狀都無關。

     。2)我再把這個三角形剪去一部分,它的內角和是多少度?(課件:剪成四邊形)

      你能利用我們三角形的內角和是180度來研究這個四邊形的內角和是多少度嗎?

     。3)如果五邊形,你還能求出他的度數嗎?

     。ㄔO計意圖:充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。)

      四、總結評價、延伸知識

      通過這節課的學習研究你掌握了哪些知識?我們是怎樣研究的呢?

      師:先研究的是特殊直角三角形的內角和是180度,接著通過量、拼等方法得到了直角三角形的內角和是180度,再利用直角三角形通過推理研究出銳角三角形和鈍角三角形的內角和是180度。

     。ㄔO計意圖:幫助學生梳理本節課的知識脈絡。)

    《三角形內角和》教學設計13

      【教材內容】:

      北師大版四年級數學下冊

      【教學目標】:

      1、探索與發現三角形的內角和是180°,已知三角形的兩個角度,會求出第三個角度。

      2、培養學生動手操作和合作交流的能力,促進掌握學習數學的方法。

      3、培養學生自主學習、積極探索的好習慣,激發學生學習數學應用數學的興趣。

      【教學重點和難點】:

      重點掌握三角形的內角和是180°,會應用三角形的內角和解決實際問題;難點是探索性質的過程。

      【教材分析】

      《三角形內角和》屬于空間與圖形的范疇,是在學生已經接觸了三角形的穩定性和三角形的分類相關知識后對三角形的進一步研究,探索三個內角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發現三角形的內角和是180°。擴充了學生認識圖形的一般規律從直觀感性的認識到具體的性質探索,更加深入的培養了學生的空間觀念。

      【教學過程】

      一、創設情境,激發興趣。

      出示課件,提出兩個兩個疑問:

      1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內角和比你大,是這樣的嗎?

      2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內角和各不相同,是這樣的嗎?老師發現它們爭論的焦點是三角形的內角和的問題,那什么是三角形的內角?什么又是三角形的內角和呢?

      二、初建模型,實際驗證自己的猜想

      在第一步的基礎上學生自然想到要量出三角形每個角的度數就能夠求出三角形的內角和,從而證明三角形的內角和與三角形的大小和形狀沒有關系都接近180度。這時教師要組織學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內角,并計算出它們的總和是多少?把小組的測量結果和討論結果記錄下來以便全班進行交流。

      三角形的形狀

      三角形每個內角的度數

      內角和

      銳角三角形

      鈍角三角形

      直角三角形

      等腰三角形

      等邊三角形

      三、再建模型,徹底的得出正確的結論

      因為在上一環節學生已經得出三角形的內角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產生一些誤差。有的同學難免可能猜想三角形的內角和就是180度呢?我們繼續研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多媒體進行演示。

      四、應用新知,鞏固練習

      1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數。(1小題屬于基本練習)

      2、試一試,在直角三角形中已知其中的一個角求另一個角的度數

      3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數求三角形的頂角。

      4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內角和是360度,對嗎?

      五、拓展與延伸

      通過三角形的內角和是180度的事實來探討四邊形、五邊行的內角和。

    《三角形內角和》教學設計14

      教學內容:人教版小學數學第八冊第85頁例5及”做一做”

      教學目標:

      1、讓學生親自動手,通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。

      2、讓學生在動手獲取知識的過程中,培養學生的創新意識、探索精神和實踐能力。并通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想

      3、在探索中體驗發現的樂趣,增強學好數學的信心、

      教學重點

      讓學生經歷“三角形內角和是180°”這一知識的形成、發展和應用的全過程。

      教學難點 :

      驗證所有三角形的內角之和都是180°

      教具準備:多媒體課件。

      學具準備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

      教學過程:

      一、 設疑引思

      1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個內角的度數、

      2、 每小組請一位同學說出自已量的三角形中兩個角的度數老師迅速”猜出”第三個角的度數、

      3、 設問:老師為什么能很快”猜” 出第三個角的度數呢?

      三角形還有許多奧妙,等待我們去探索、<導入新課,板書課題>

      二、 探索交流,獲取新知

      1、 量一量:每個學生將自已剛才量出的三角形的內角和的度數相加,初步得出”三角形的內角和是180°”的結論、

      2、 折一折:將正方形紙沿對角線對折,使之變成兩個完全重合的三角形,發現:一個三角形的內角和就是正方形4個角內角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內角和是180°”的結論、

      3、 拼一拼:學生先動手剪拼所準備的三角形,進一步驗證得出”三角形的內角和是180°”的結論、

      4、 師利用課件演示將一個三角形的三個角拼成一個平角的過程、

      5、 驗證:FLASH演示三種三角形割補過程

      發現1: 通過把直角三角形割補后,內角∠2,∠3 組成了一個()角,等于()度,∠1等于90度。所以直角三角形的內角和等于( )度。

      發現2:通過把鈍角、銳角三角形割補后,三角組成了一個( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內角和都是180度。

      6、 小結:剛才能過量一量折一折拼一拼,你發現了什么?

      生說,師板書:三角形的內角和———180°

      三、 應用練習,拓展提高

      1、書例5后”做一做”

      思考:為什么不能畫出一個有兩個直角的三角形?(兩個鈍角、一個直角和一個鈍角的三角形?)

      2、下面哪三個角會在同一個三角形中。

     。1)30、60、45、90

     。2)52、46、54、80

      (3)61、38、44、98

      3、走向生活:

     。1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門上了,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?

      (結合學生回答進行演示:延長兩條邊,交于一點,形成原來的三角形。所以:兩個角確定了,三角形玻璃形狀和大小也就確定了。)

      四 作業:作業本

      五 全課總結

      總結:今天這節課我們研究了三角形的內角和,你們學到了哪些知識,有什么收獲?

      板書設計:三角形的內角和

      三角形的內角和———180°

    《三角形內角和》教學設計15

      【教材分析】

      《三角形內角和》是北師大版《數學》四年級下冊的內容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內角和及其他實際問題的基礎,因此,掌握“三角形的內角和是180度”這一規律具有重要意義。教材首先出示了兩個三角形比內角和這一情境,讓學生通過測量、折疊、拼湊等方法,發現三角形的內角和是180度。教材還安排了“試一試”,“練一練”的內容。已知三角形兩個內角的度數,求出第三個角的度數。

      【學生分析】

      經過近四年的課改實驗,孩子們已經有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發表自己的見解,對數學產生了濃厚的興趣。1.知識方面:學生已經掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。

      【學習目標】

      知識目標:掌握三角形內角和是180度這一規律,并能實際應用。

      能力目標: 培養學生主動探索、動手操作的能力。培養學生收集、整理、歸納信息的能力。使學生養成良好的合作習慣。

      情感目標: 讓學生體會幾何圖形內在的結構美。

      【教學過程】

      一、 情景激趣,質疑猜想。

      播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內角和的大小”爆發了一場激烈的爭吵。

      鈍角三角形大聲叫著:“我的鈍角大,我的內角和一定比你們的內角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內角和并不比你小。”直角三角形說:“別爭了,三角形的內角和都是180°。我們的內角和是一樣大的!

      師:想一想,什么是三角形的三個內角的和。

      生:三角形的三個內角的度數和。

      師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?

      學生進行猜想,自由發言。

     。ㄔO計意圖:教師借助多媒體技術創設問題情境,架起數學學習與現實生活,抽象數學與具體問題之間的橋梁,激發了學生的學習興趣。鼓勵學生主動質疑猜想是培養學生學會學習的重要途徑。)

      二、自主探究,驗證猜想

      師:剛才大部分同學都猜直角三角形說的對。三角形的三個內角的和都是 180°,你能設法驗證這個猜想嗎?

      生1:能。我量出三角形的三個內角和度數,加起來是否接近180°(量的時候可能會有些誤差)。

      生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。

      生3:我把三角形的三個角撕下來,拼一拼是否180°。

      生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。

      ……

      師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W生把三角形的三個內角分別標上∠1、∠2、∠3,以免在剪拼時把內角搞混了。)

      學生邊實驗邊整理信息,完成實驗報告單后,學習小組內進行交流討論。

     。ㄔO計意圖:驗證猜想為學生提供了“做數學”的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數學知識的產生發展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創新能力的發展。)

      三、交流評價,歸納結論。

      學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。

      實驗報告單

      實驗名稱

      三角形內角和

      實驗目的

      探究三角形內角和是多少度。

      實驗材料

      尺子

      剪刀

      量角器

      銳角三角形紙片

      直角三角形紙片

      鈍角三角形紙片

      我的方法

      我的發現

      我的表現

      自評

      互評

      學生在展示過程中,充分交流和討論實驗中各自使用的方法和發現,教師要對學生的閃光點及時進行表揚和鼓勵。

      師生共同歸納,得出結論:

      三角形內角和等于180°

     。ㄔO計意圖:各學習小組匯報自己的驗證過程,展示探究的成果。對學生探索發現的方法、策略進行總結歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)

      四、分層練習,鞏固創新。

     、僬n件出示:

      師:這個三角形是什么三角形?知道幾個內角的度數?

      生:直角三角形,知道一個角是30°,還有一個角是90°。∠A=90°-30°=60°。

      師:根據今天所學的知識,誰能求出A的度數?大家自己試一試。

      學生做完后反饋講評時讓學生說說自己的方法。

      生1:用三角形內角的和(180°)減去30°再減去90°,算出∠A是60°。

      ∠A=180°-30°-90°=60°。

      生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。

      ②學生完成完成P29的第一題。

      引導學生按照前面的方法獨立完成,教師巡視,集體訂正。

     、鄄乱徊氯切蔚牧硗鈨蓚角可能各是多少度。

      同桌同學互相說一說。(答案不唯一)

     、苄〗M操作探究活動。

      讓學生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。

      方 法

      四邊形內角和

      用量角器量出每個內角的度數,并相加。

      把四邊形四個角剪下來,拼在一起。

      把四邊形分為兩個三角形。

      填表后讓學生想一想、互相說一說,四邊形內角和是多少度?

     。ㄔO計意圖:引導學生將探究學習活動中所獲得的結論經驗和方法運用于探索解決簡單的實際問題。組織學生參與具有趣味性、操作性和開放性的練習活動,讓學生在鞏固練習中培養動手能力、實踐能力和創新思維。)

    【《三角形內角和》教學設計15篇】相關文章:

    多邊形的內角和教學設計02-09

     三角形的內角和課件和教案05-12

    初中三角形內角和優秀的教學設計范文(精選5篇)12-27

    《三角形的內角和》教學反思(通用12篇)12-25

    三角形的內角和試講稿11-16

    《三角形的內角和》優秀說課稿模板12-28

    《三角形的內角和》說課稿7篇11-05

    《獅子和鹿》教學設計和反思12-16

    《等腰三角形》教學設計02-14

    《等腰三角形》教學設計02-14

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      亚洲欧美日韩中文字幕无线码 | 亚洲AV色香蕉一区二区三区夜夜嗨 | 最新国产精品视频第一页 | 日韩亚洲一区二 | 日韩欧美在线观看视频网站 | 亚洲成年片在线 |