二次函數(shù)線段最值教學設(shè)計

    時間:2021-04-16 09:16:56 教學設(shè)計 我要投稿

    二次函數(shù)線段最值教學設(shè)計

      作為一名教學工作者,很有必要精心設(shè)計一份教學設(shè)計,借助教學設(shè)計可以提高教學質(zhì)量,收到預(yù)期的教學效果。教學設(shè)計應(yīng)該怎么寫才好呢?以下是小編為大家收集的二次函數(shù)線段最值教學設(shè)計,歡迎大家分享。

    二次函數(shù)線段最值教學設(shè)計

      教材分析

      本節(jié)課主要內(nèi)容包括:運用二次函數(shù)的最大值解決最大面積的問題,讓學生體會拋物線的頂點就是二次函數(shù)圖象的最高點(最低點),因此,可利用頂點坐標求實際問題中的最大值(或最小值).在最大利潤這個問題中,應(yīng)用頂點坐標求最大利潤,是較難的實際問題。

      本節(jié)課的設(shè)計是從生活實例入手,讓學生體會在解決問題的過程中獲取知識的快樂,使學生成為課堂的主人。

      按照新課程理念,結(jié)合本節(jié)課的具體內(nèi)容,本節(jié)課的教學目標確定為相互關(guān)聯(lián)的三個層次:

      1、知識與技能

      通過實際問題與二次函數(shù)關(guān)系的探究,讓學生掌握利用頂點坐標解決最大值(或最小值)問題的方法。

      2、過程與方法

      通過對實際問題的研究,體會數(shù)學知識的現(xiàn)實意義。進一步認識如何利用二次函數(shù)的有關(guān)知識解決實際問題。滲透轉(zhuǎn)化及分類的數(shù)學思想方法。

      3、情感態(tài)度價值觀

     。1)通過巧妙的教學設(shè)計,激發(fā)學生的學習興趣,讓學生感受數(shù)學的美感。

      (2)在知識教學中體會數(shù)學知識的應(yīng)用價值。

      本節(jié)課的教學重點是“探究利用二次函數(shù)的最大值(或最小值)解決實際問題的.方法”,教學難點是“如何將實際問題轉(zhuǎn)化為二次函數(shù)的問題”。

      實驗研究:

      作為一線教師,應(yīng)該靈活地處理和使用教材。充分發(fā)揮教師自己的智慧,把學生置于教學的出發(fā)點和核心地位,應(yīng)學生而動,應(yīng)情境而變,課堂才能煥發(fā)勃勃生機,課堂上才能顯現(xiàn)真正的活力。因此我對教材進行了重新開發(fā),從學生熟悉的生活情境出發(fā),與學生生活背景有密切相關(guān)的學習素材來構(gòu)建學生學習的內(nèi)容體系。把握好以下兩方面內(nèi)容:

     。ㄒ唬、利用二次函數(shù)解決實際問題的易錯點:

     、兕}意不清,信息處理不當。

     、谶x用哪種函數(shù)模型解題,判斷不清。

     、酆鲆暼≈捣秶拇_定,忽視圖象的正確畫法。

     、軐嶋H問題轉(zhuǎn)化為數(shù)學問題,對學生要求較高,一般學生不易達到。

     。ǘ⒔鉀Q問題的突破點:

     、俜磸妥x題,理解清楚題意,對模糊的信息要反復比較。

     、诩訌妼嶋H問題的分析,加強對幾何關(guān)系的探求,提高自己的分析能力。

     、圩⒁鈱嶋H問題對自變量取值范圍的影響,進而對函數(shù)圖象的影響。

     、茏⒁鈾z驗,養(yǎng)成良好的解題習慣。

      因此我由課本的一個問題轉(zhuǎn)化為兩個實際問題入手通過創(chuàng)設(shè)情境,層層設(shè)問,啟發(fā)學生自主學習。

      教學目標

      1.知識與能力:初步掌握解決二次函數(shù)在閉區(qū)間上最值問題的一般解法,總結(jié)歸納出二次函數(shù)在閉區(qū)間上最值的一般規(guī)律,學會運用二次函數(shù)在閉區(qū)間上的圖像研究和理解相關(guān)問題。

      2.過程與方法:通過實驗,觀察影響二次函數(shù)在閉區(qū)間上的最值的因素,在此基礎(chǔ)上討論探究出解決二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。

      3.情感、態(tài)度與價值觀:通過探究,讓學生體會分類討論思想與數(shù)形結(jié)合思想在解決數(shù)學問題中的重要作用,培養(yǎng)學生分析問題、解決問題的能力,同時培養(yǎng)學生合作與交流的能力。

      教學重點與難點

      教學重點:尋求二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。

      教學難點:含參二次函數(shù)在閉區(qū)間上的最值的求法以及分類討論思想的正確運用。

      學生學情分析

      我所代班級的學生是高一新生,他們在初中已學過二次函數(shù)的簡單性質(zhì)與圖像,知道二次函數(shù)在二次函數(shù)最值教學設(shè)計時在頂點處取得最大值或最小值,在前幾節(jié)課又學習了函數(shù)的概念與表示、單調(diào)性與最值的相關(guān)知識,已經(jīng)具備了本節(jié)課學習必須的基礎(chǔ)知識。

      教法分析

      根據(jù)教學實際,我將本節(jié)課設(shè)計為數(shù)學探究課,在探究的過程中,借助于多媒體教學手段,讓學生觀察幾何畫板中的動態(tài)演示,通過對二次函數(shù)圖像的“再認識”,探究二次函數(shù)在閉區(qū)間上的最值。同時為了配合多媒體的教學,準備了學案讓學生配套使用。先讓學生提前預(yù)習相關(guān)內(nèi)容,對所要探究的問題有初步的了解,再在課堂上詳細的探究,課后在學案上有相應(yīng)的課后作業(yè)題讓學生鞏固所學知識。

      教學過程

     。ㄒ唬⿵土暸f知

      回憶二次函數(shù)的圖像與性質(zhì):

      1. 圖像:

      2. 定義域:

      3. 單調(diào)性:

      4. 最值:

      【設(shè)計意圖】復習舊知,引入新課。

     。ǘ┳灾魈骄

      探究1:定軸定區(qū)間最值問題

      分別在下列范圍內(nèi)求函數(shù)f(x)=x2-2x-3的最值:

      二次函數(shù)最值教學設(shè)計 二次函數(shù)最值教學設(shè)計

      二次函數(shù)最值教學設(shè)計

      規(guī)律總結(jié):作出二次函數(shù)的圖像,通過圖像確定函數(shù)在給定區(qū)間上的最值。

      【設(shè)計意圖】

      通過探究

      1,讓學生討論探究定函數(shù)在定區(qū)間上最值的求解方法,并通過二次函數(shù)在閉區(qū)間上圖像直觀形象地觀察、分析問題和解決問題。

      (三)合作探究(含參二次函數(shù)最值求解問題 )

      探究2:動軸定區(qū)間最值問題

      求函數(shù)f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。

      【設(shè)計意圖】

      通過探究2,讓學生討論探究動軸定區(qū)間上最小值的求解方法,并通過動態(tài)演示二次函數(shù)在閉區(qū)間上的圖像,讓學生直觀形象地觀察、分析問題和解決問題。

      變式訓練:求函數(shù)f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。

      【設(shè)計意圖】

      通過變式訓練,讓學生進一步體會動軸定區(qū)間上最大值的求解方法,同時歸納出動軸定區(qū)間最值問題求解的一般規(guī)律。

      規(guī)律總結(jié):移動對稱軸,比較對稱軸和區(qū)間的位置關(guān)系,再結(jié)合圖像進行進行分類討論,

      注意做到“不重不漏”。

      探究3:定軸動區(qū)間最值問題

      求函數(shù)f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。

      【設(shè)計意圖】讓學生分組討論探究3的求解方法,使學生體會運動的相對性,從而類比探究2的過程與方法可以制定出解決問題3的方法。

      變式訓練:求函數(shù)f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.

      【設(shè)計意圖】

      通過變式訓練,讓學生進一步體會定軸動區(qū)間上最大值的求解方法,同時歸納出定軸動區(qū)間最值問題求解的一般規(guī)律。

      規(guī)律總結(jié):移動區(qū)間,比較對稱軸和區(qū)間的位置關(guān)系,再結(jié)合圖像進行分類討論,注意做到“不重不漏”。

     。ㄋ模┲R小結(jié)

      本節(jié)課研究了二次函數(shù)的三類最值問題:

      (1) 定軸定區(qū)間最值問題; (2) 動軸定區(qū)間最值問題; (3) 定軸動區(qū)間最值問題.

      核心思想是判斷對稱軸與區(qū)間的相對位置, 應(yīng)用數(shù)形結(jié)合、分類討論思想求出最值。

      【設(shè)計意圖】

      歸納總結(jié)二次函數(shù)問題在閉區(qū)間上最值的一般解法和規(guī)律,完成本節(jié)課知識的建構(gòu)。

     。ㄎ澹┙Y(jié)束語

      數(shù)缺形時少直觀,形少數(shù)時難入微.數(shù)形結(jié)合百般好,割裂分家萬事休!

      (六)課后作業(yè)

      1.二次函數(shù)最值教學設(shè)計1.分別在下列范圍內(nèi)求二次函數(shù)f(x)=x2+4x-6的最值。

      2. 求函數(shù)f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。

      3. 求函數(shù)f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。

      【設(shè)計意圖】

      學生應(yīng)用探究所得知識解決相關(guān)問題,進一步鞏固和提高二次函數(shù)在閉區(qū)間上最值的求解方法與規(guī)律。

    【二次函數(shù)線段最值教學設(shè)計】相關(guān)文章:

    認識線段教學設(shè)計03-30

    《認識線段》教學設(shè)計03-30

    《認識線段》教學設(shè)計15篇04-06

    高一新教材數(shù)學函數(shù)最值說課稿04-07

    二次函數(shù)說課稿02-17

    二次函數(shù)的圖像說課稿11-04

    二次函數(shù)超級經(jīng)典課件教案05-13

    二次函數(shù)說課稿(11篇)02-17

    二次函數(shù)說課稿11篇11-15

    數(shù)學二次函數(shù)復習資料08-27

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      最精彩色站在线播放 | 中文字幕你懂的在线 | 日韩精品一区二区三区在线 | 亚洲乱码国产精品 | 日韩欧美久久综合一区 | 日韩欧美在线观看视频网站 |