初三上冊數學解一元二次方程教學計劃

    時間:2021-06-13 18:48:47 教學計劃 我要投稿

    初三上冊數學解一元二次方程教學計劃


    初三上冊數學解一元二次方程教學計劃

      教學目標

      (1)會用公式法解一元二次方程;

      (2)經歷求根公式的發現和探究過程,提高學生觀察能力、分析能力以及邏輯思維能力;

      (3)滲透化歸思想,領悟配方法,感受數學的內在美.

      教學重點

      知識層面:公式的推導和用公式法解一元二次方程;

      能力層面:以求根公式的發現和探究為載體,滲透化歸的數學思想方法.

      教學難點:求根公式的推導.

      總體設計思路:

      以舊知識為起點,問題為主線,以教師指導下學生自主探究為基本方式,突出數學知識的內在聯系與探究知識的方法,發展學生的理性思維.

      教學過程

      (一)以舊引新,提出問題

      解下列一元二次方程:(學生選兩題做)

      (1)x2+4x+2=0 ; (2)3x2-6x+1=0;

      (3)4x2-16x+17=0 ; (4)3x2+4x+7=0.

      然后讓學生仔細觀察四題的解答過程,由此發現有什么相同之處,有什么不同之處?

      接著再改變上面每題的其中的一個系數,得到新的四個方程:(學生不做,思考其解題過程)

      (1)3x2+4x+2=0; (2)3x2-2x+1=0;

      (3)4x2-16x-3=0 ; (4)3x2+x+7=0.

      思考:新的四題與原題的解題過程會發生什么變化?

      設計意圖: 1.復習鞏固舊知識,為本節課的學習掃除障礙;

      2.讓學生充分感受到用配方法解題既存在著共性,也存在著不同的現象,由此激發學生的求知欲望.

      3、學生根據自己的情況選兩題,這樣做能保證運算的正確和繼續學習數學的信心。

      (二)分析問題,探究本質

      由學生的觀察討論得到:用配方法解不同一元二次方程的過程中,相同之處是配方的過程----程序化的操作,不同之處是方程的根的情況及其方程的根.

      進而提出下面的問題:

      既然過程是相同的,為什么會出現根的不同?方程的根與什么有關?有怎樣的關系?如何進一步探究?

      讓學生討論得出:從一元二次方程的一般形式去探究根與系數的關系.

      ax2+bx+c=0(a≠0) 注:根據學生學習程度的不同,可

      ax2+bx=-c 以采用學生獨立嘗試配方, 合

      x2+ x=- 作嘗試配方或教師引導下進行

      x2+ x+ =- + 配方等各種教學形式.

      (x+ )2=

      然后再議開方過程(讓學生結合前面四題方程來加以討論),使學生充分認識到“b2 -4ac”的重要性.

      當b2-4ac≥0時,

      (x+ )2= 注:這樣變形可以避免對a正、負的討論,

      x+ = 便于學生的理解.

      x=- 即x=

      x1= , x2=

      當b2-4ac<0時,

      方程無實數根.

      設計意圖:讓學生通過經歷知識形成的全過程,從而提高自身的觀察能力、分析問題和解決問題的能力,發展了理性思維.

      (三)得出結論,解決問題

      由上面的探究過程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a,b,c確定. 當b2-4ac≥0時,

      x=;

      當b2-4ac<0時,方程無實數根.

      這個式子對解題有什么幫助?通過討論加深對式子的.理解,同時讓學生進一步感受到數學的簡潔美、和諧美.

      進而闡述這個式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.

      設計意圖: 理解是記憶的基礎。只有理解了公式才能爛熟于心,才能在題目中熟練應用,不會因記不清公式造成運算的錯誤。

      運用公式法解一元二次方程.(前兩道教師示范,后兩道學生練習)

      (1)2x2-x-1=0; (2)4x2-3x+2=0 ;

      (3)x2+15x=-3x; (4)x2- x+ =0.

      注:( 教師在示范時多強調注意點、易錯點,會減少學生做題的錯誤,讓學生在做題中獲得成功感。)

      設計意圖:進一步闡述求根公式,歸納總結用公式法解一元二次方程的一般步驟,及時總結簡化運算,節約時間又提高做題的準確性。

      用公式法解一元二次方程:(比一比,看誰做得又快又對)

      (1)x2+x-6=0; (2)x2- x- =0;

      (3)3x2-6x-2=0;(4)4x2-6x=0;

      設計意圖:能夠熟練運用公式法解一元二次方程,讓每位學生都有所收獲,通過大量練習,熟悉公式法的步驟,訓練快速準確的計算能力。

      (四)拓展運用,升華提高

      [想一想]

      清清和楚楚剛學了用公式法解一元二次方程,看到一個關于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清說:“此方程有兩個不相等的實數根”,

      而楚楚反駁說:“不一定,根的情況跟m的值有關”.那你們認為呢?并說明理由.

      設計意圖:基于學生基礎較好,因此對求根公式作進一步深化,并綜合運用了配方法,使不同層次的學生都有不同提高.比較配方法在不同題型中的用法,

      避免以后出現運算錯誤。

      歸納小結, 結合上面想一想,讓學生嘗試對本節課的知識進行梳理,對方法進行提煉,從而使學生的知識和方法更具系統化和網絡化,同時也是情感的升華過程.

      (五) 布置作業

      ㈠必做題

      ㈡選做題:P46第12題。

      設計意圖:結合學生的實際情況,可以分層布置。 適合的練習既鞏固了所學提高了計算的速度又保養了學生學習數學的興趣和信心。

    【初三上冊數學解一元二次方程教學計劃】相關文章:

    解一元二次方程課件03-19

    《降次-解一元二次方程》教學計劃06-01

    人教版初三數學《一元二次方程》教學計劃05-29

    《配方法解一元二次方程》的數學教學反思06-29

    解一元二次方程數學知識點總結02-08

    九年級數學上冊《公式法解一元二次方程》教學反思01-24

    新人教版九年級數學上冊《解一元二次方程》教學反思06-20

    關于人教版初三數學上冊《一元二次方程的解法》教學反思11-23

    降次《解一元二次方程》的教學設計10-16

    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      在线观看视频久a | 午夜福利一区美女 | 伊人久久精品一区二区三区 | 日本韩国偷拍视频对白不卡高清精品 | 日韩中文字幕在线视频 | 亚洲日本中文字幕 |