實用文檔>高一數(shù)學(xué)知識點總結(jié)

    高一數(shù)學(xué)知識點總結(jié)

    時間:2024-11-20 13:54:51

    高一數(shù)學(xué)知識點總結(jié)

      漫長的學(xué)習(xí)生涯中,說起知識點,應(yīng)該沒有人不熟悉吧?知識點就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?以下是小編精心整理的高一數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。

    高一數(shù)學(xué)知識點總結(jié)

      高一數(shù)學(xué)知識總結(jié) 1

      一、集合的含義

      集合的中元素的三個特性:

      (1)元素的確定性如:世界上最高的山

      (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

      (3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合

      3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

      (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

      (2)集合的表示方法:列舉法與描述法。

      注意:常用數(shù)集及其記法:

      非負整數(shù)集(即自然數(shù)集) 記作:N

      正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R

      列舉法:{a,b,c……}

      描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2}

      語言描述法:例:{不是直角三角形的三角形}

      Venn圖:

      4、集合的分類:

      有限集 含有有限個元素的集合

      無限集 含有無限個元素的集合

      空集 不含任何元素的集合  例:{x|x2=-5}

      二、集合間的基本關(guān)系

      1.“包含”關(guān)系—子集

      注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

      反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

      2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

      實例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

      即:① 任何一個集合是它本身的子集。AA

      ②真子集:如果AB,且A≠ B那就說集合A是集合B的真子集,記作AB(或BA)

      ③如果 AB, BC ,那么 AC

      ④ 如果AB 同時 BA 那么A=B

      3. 不含任何元素的集合叫做空集,記為Φ

      規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

      有n個元素的集合,含有2n個子集,2n-1個真子集

      二、函數(shù)

      1、函數(shù)定義域、值域求法綜合

      2.、函數(shù)奇偶性與單調(diào)性問題的解題策略

      3、恒成立問題的求解策略

      4、反函數(shù)的幾種題型及方法

      5、二次函數(shù)根的問題——一題多解

      &指數(shù)函數(shù)y=a^x

      a^a*a^b=a^a+b(a>0,a、b屬于Q)

      (a^a)^b=a^ab(a>0,a、b屬于Q)

      (ab)^a=a^a*b^a(a>0,a、b屬于Q)

      指數(shù)函數(shù)對稱規(guī)律:

      1、函數(shù)y=a^x與y=a^-x關(guān)于y軸對稱

      2、函數(shù)y=a^x與y=-a^x關(guān)于x軸對稱

      3、函數(shù)y=a^x與y=-a^-x關(guān)于坐標原點對稱

      冪函數(shù)y=x^a(a屬于R)

      1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù)

      2、冪函數(shù)性質(zhì)歸納。

      (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);

      (2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當時,冪函數(shù)的圖象下凸;當時,冪函數(shù)的圖象上凸;

      (3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù)。在第一象限內(nèi),當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸。

      方程的根與函數(shù)的零點

      1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

      2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。

      即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

      3、函數(shù)零點的求法:

      (代數(shù)法)求方程的實數(shù)根;

      (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

      4、二次函數(shù)的零點:

      二次函數(shù).

      (1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

      (2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

      (3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

      三、平面向量

      已知兩個從同一點O出發(fā)的兩個向量OA、OB,以O(shè)A、OB為鄰邊作平行四邊形OACB,則以O(shè)為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。

      對于零向量和任意向量a,有:0+a=a+0=a。

      |a+b|≤|a|+|b|。

      向量的加法滿足所有的加法運算定律。

      數(shù)乘運算

      實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘,記作λa|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ < 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。

      設(shè)λ、μ是實數(shù),那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。

      向量的加法運算、減法運算、數(shù)乘運算統(tǒng)稱線性運算。

      向量的數(shù)量積

      已知兩個非零向量a、b,那么|a||b|cos θ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。

      a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cos θ的乘積。

      兩個向量的數(shù)量積等于它們對應(yīng)坐標的乘積的和。

      四、三角函數(shù)

      1、善于用“1“巧解題

      2、三角問題的非三角化解題策略

      3、三角函數(shù)有界性求最值解題方法

      4、三角函數(shù)向量綜合題例析

      5、三角函數(shù)中的數(shù)學(xué)思想方法

      高一數(shù)學(xué)知識點總結(jié) 2

      指數(shù)函數(shù)

      (1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

      (2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

      (3)函數(shù)圖形都是下凹的。

      (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

      (5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

      (6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

      (7)函數(shù)總是通過(0,1)這點。

      (8)顯然指數(shù)函數(shù)。

      反比例函數(shù)

      形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

      自變量x的取值范圍是不等于0的一切實數(shù)。

      反比例函數(shù)圖像性質(zhì):

      反比例函數(shù)的圖像為雙曲線。

      由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

      另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

      k分別為正和負(2和-2)時的函數(shù)圖像。

      當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

      當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

      反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

      知識點:

      1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

      2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

      高一數(shù)學(xué)知識點總結(jié) 3

      一、函數(shù)的概念與表示

      1、映射

      (1)映射:設(shè)A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應(yīng),則這樣的對應(yīng)(包括集合A、B以及A到B的對應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

      注意點:

      (1)對映射定義的理解。

      (2)判斷一個對應(yīng)是映射的方法。一對多不是映射,多對一是映射

      2、函數(shù)

      構(gòu)成函數(shù)概念的三要素

      ①定義域②對應(yīng)法則③值域

      兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同

      二、函數(shù)的解析式與定義域

      1、求函數(shù)定義域的主要依據(jù):

      (1)分式的分母不為零;

      (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

      (3)對數(shù)函數(shù)的真數(shù)必須大于零;

      (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

      三、函數(shù)的值域

      1求函數(shù)值域的方法

      ①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復(fù)合函數(shù);

      ②換元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

      ③判別式法:運用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

      ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);

      ⑤單調(diào)性法:利用函數(shù)的單調(diào)性求值域;

      ⑥圖象法:二次函數(shù)必畫草圖求其值域;

      ⑦利用對號函數(shù)

      ⑧幾何意義法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對值函數(shù)

      四。函數(shù)的奇偶性

      1、定義:設(shè)y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

      如果對于任意∈A,都有,則稱y=f(x)為奇

      函數(shù)。

      2、性質(zhì):

      ①y=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點對稱,②若函數(shù)f(x)的定義域關(guān)于原點對稱,則f(0)=0

      ③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點對稱]

      3。奇偶性的判斷

      ①看定義域是否關(guān)于原點對稱②看f(x)與f(—x)的關(guān)系

      五、函數(shù)的單調(diào)性

      1、函數(shù)單調(diào)性的定義:

      2、設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

      高一數(shù)學(xué)知識點總結(jié) 4

      1、柱、錐、臺、球的結(jié)構(gòu)特征

      (1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相

      平行,由這些面所圍成的幾何體。

      分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

      表示:用各頂點字母,如五棱柱ABCDE?ABCDE或用對角線的端點字母,如五棱柱AD

      幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平

      行于底面的截面是與底面全等的多邊形。

      (2)棱錐

      定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

      表示:用各頂點字母,如五棱錐P?ABCDE

      幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離

      與高的比的平方。

      (3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

      分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

      表示:用各頂點字母,如五棱臺P?ABCDE

      幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

      (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形。

      高一數(shù)學(xué)知識點總結(jié) 5

      1、函數(shù):設(shè)A、B為非空集合,如果按照某個特定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù),寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。

      2、函數(shù)定義域的解題思路:

      ⑴若x處于分母位置,則分母x不能為0。

      ⑵偶次方根的被開方數(shù)不小于0。

      ⑶對數(shù)式的真數(shù)必須大于0。

      ⑷指數(shù)對數(shù)式的底,不得為1,且必須大于0。

      ⑸指數(shù)為0時,底數(shù)不得為0。

      ⑹如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的,那么,它的定義域是各個部分都有意義的x值組成的集合。

      ⑺實際問題中的函數(shù)的定義域還要保證實際問題有意義。

      3、相同函數(shù)

      ⑴表達式相同:與表示自變量和函數(shù)值的字母無關(guān)。

      ⑵定義域一致,對應(yīng)法則一致。

      4、函數(shù)值域的求法

      ⑴觀察法:適用于初等函數(shù)及一些簡單的由初等函數(shù)通過四則運算得到的函數(shù)。

      ⑵圖像法:適用于易于畫出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。

      ⑶配方法:主要用于二次函數(shù),配方成y=(x-a)2+b的形式。

      ⑷代換法:主要用于由已知值域的函數(shù)推測未知函數(shù)的值域。

      5、函數(shù)圖像的變換

      ⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進行加減。

      ⑵伸縮變換:在x前加上系數(shù)。

      ⑶對稱變換:高中階段不作要求。

      6、映射:設(shè)A、B是兩個非空集合,如果按某一個確定的對應(yīng)法則f,使對于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的映射。

      ⑴集合A中的每一個元素,在集合B中都有象,并且象是唯一的。

      ⑵集合A中的不同元素,在集合B中對應(yīng)的象可以是同一個。

      ⑶不要求集合B中的每一個元素在集合A中都有原象。

      7、分段函數(shù)

      ⑴在定義域的不同部分上有不同的解析式表達式。

      ⑵各部分自變量和函數(shù)值的取值范圍不同。

      ⑶分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集。

      8、復(fù)合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復(fù)合函數(shù)。

      高一數(shù)學(xué)知識點總結(jié) 6

      1、函數(shù)的局部性質(zhì)——單調(diào)性

      設(shè)函數(shù)y=f(x)的定義域為I,如果對應(yīng)定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個變量x1、x2,當x1< x2時,都有f(x1)f(x2),那么那么y=f(x)在區(qū)間D上是減函數(shù),D是函數(shù)y=f(x)的單調(diào)遞減區(qū)間。

      ⑴函數(shù)區(qū)間單調(diào)性的判斷思路

      ⅰ在給出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1< x2。

      ⅱ做差值f(x1)-f(x2),并進行變形和配方,變?yōu)橐子谂袛嗾摰男问健?/p>

      ⅲ判斷變形后的表達式f(x1)-f(x2)的符號,指出單調(diào)性。

      ⑵復(fù)合函數(shù)的單調(diào)性

      復(fù)合函數(shù)y=f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律為“同增異減”;多個函數(shù)的復(fù)合函數(shù),根據(jù)原則“減偶則增,減奇則減”。

      ⑶注意事項

      函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。

      2、函數(shù)的整體性質(zhì)——奇偶性

      對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數(shù);

      對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。

      ⑴奇函數(shù)和偶函數(shù)的性質(zhì)

      ⅰ無論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關(guān)于原點對稱。

      ⅱ奇函數(shù)的圖像關(guān)于原點對稱,偶函數(shù)的圖像關(guān)于y軸對稱。

      ⑵函數(shù)奇偶性判斷思路

      ⅰ先確定函數(shù)的定義域是否關(guān)于原點對稱,若不關(guān)于原點對稱,則為非奇非偶函數(shù)。

      ⅱ確定f(x)和f(-x)的關(guān)系:

      若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);

      若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。

      3、函數(shù)的最值問題

      ⑴對于二次函數(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。

      ⑵對于易于畫出函數(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。

      ⑶關(guān)于二次函數(shù)在閉區(qū)間的最值問題

      ⅰ判斷二次函數(shù)的頂點是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。

      ⅱ若二次函數(shù)的頂點在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點為最小值,a<0時頂點為最大值;后判斷區(qū)間的兩端點距離頂點的遠近,離頂點遠的端點的函數(shù)值,即為a>0時的最大值或a<0時的最小值。

      ⅲ若二次函數(shù)的頂點不在所求區(qū)間內(nèi),則判斷函數(shù)在該區(qū)間的單調(diào)性

      若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);

      若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。

    【高一數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

    高一數(shù)學(xué)必修1各章知識點總結(jié)05-27

    數(shù)學(xué)高一年級下冊知識點09-17

    高一物理必修二知識點總結(jié)08-07

    高一數(shù)學(xué)的教學(xué)總結(jié)08-02

    高一數(shù)學(xué)教學(xué)總結(jié)08-18

    高一數(shù)學(xué)的教學(xué)總結(jié)范文08-15

    高一數(shù)學(xué)經(jīng)驗總結(jié)03-19

    高一數(shù)學(xué)計劃總結(jié)范文05-19

    高一年級數(shù)學(xué)《立體幾何》知識點05-29

    用戶協(xié)議
    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      亚洲精品嫩草影院久久 | 欧美精品中文字幕第九在线 | 在线欧美中文亚洲精品 | 亚洲精品一级a级精精彩在线 | 亚洲七七久久综合影 | 日韩欧美国产一二三区 |