實用文檔>函數的基本問題總結

    函數的基本問題總結

    時間:2024-08-12 01:37:32

    函數的基本問題總結

    函數的基本問題總結

    函數的基本問題總結

      一、函數的單調性

      1.增函數和減函數

      一般地,設函數f(x)的定義域為I:

      如果對于屬于I內某個區間上的任意兩個自變量的值x1、x2,當x1<x2時都有f(x1)<f(x2).那么就說f(x)在 這個區間上是增函數。

      如果對于屬于I內某個區間上的任意兩個自變量的值x1、x2,當x1<x2時都有f(x1)>f(x2).那么就是f(x)在這個區間上是減函數。

      2.單調區間

      單調區間是指函數在某一區間內的函數值Y,隨自變量X增大而增大(或減小)恒成立。如果函數y=f(x)在某個區間是增函數或減函數。那么就說函數y=f(x)在這一區間具有(嚴格的)單調性,這一區間叫做y= f(x)的單調區間。

      二、三角函數 1.三角函數

      三角函數的定義域是研究其他一切性質的前提,求三角函數的定義域實際上就是解最簡單的三角不等式,通常可用三角函數的圖像或三角函數線來求解,注意數形結合思想的應用,如何運用三角函數的圖像解決問題能夠幫助對數形結合思想的掌握。

      2.三角函數誘導公式

      公式一: 設α為任意角,終邊相同的角的同一三角函數的值相等運用同角三角函數的基本關系式求值

      公式二: 設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

      sin(π+α)=—sinα

      cos(π+α)=-cosα

      tan(π+α)=tanα

      cot(π+α)=cotα

      公式三: 任意角α與-α的三角函數值之間的關系:

      sin(-α)=-sinα

      3.銳角三角函數

      在△ABC中,∠C為直角,∠A和∠B是銳角

      (1)我們把銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA...

      三、指數函數 1.指數函數的定義

      指數函數的一般形式為y=a^x(a>0且≠1) (x∈R).

      2.指數函數的性質

      (1)曲線沿x軸方向向左無限延展〈=〉函數的定義域為(-∞,+∞)

      (2)曲線在x軸上方,而且向左或向右隨著x值的減小或增大無限靠近X軸(x軸是曲線的漸近線)〈=〉函數的值域為(0,+∞)

      四、對數與對數函數 1.定義

      對數:一般地,如果a(a大于0,且a不等于1)的b次冪等于N,那么數b叫做以a為底N的對數,記作log aN=b,讀作以a為底N的對數,其中a叫做對數的底數,N叫做真數。

      對數函數:一般地,函數y=log(a)X,(其中a是常數,a>0且a不等于1)叫做對數函數,它實際上就是指數函數的反函數,因此指數函數里對于a的規定,同樣適用于對數函數。

      2.方法點撥

      在解決函數的綜合性問題時,要根據題目的具體情況把問題分解為若干小問題一次解決,然后再整合解決的結果,這也是分類與整合思想的一個重要方面。

      五、冪函數

      1.定義

      形如y=x^a(a為常數)的函數,即以底數為自變量 冪為因變量,指數為常量的函數稱為冪函數。

      2.性質

      冪函數不經過第三象限,如果該函數的指數的分子n是偶數,而分母m是任意整數,則y>0,圖像在第一;二象限.這時(-1)^p的指數p的奇偶性無關.

      如果函數的指數的分母m是偶數,而分子n是任意整數,則x>0(或x>=0);y>0(或y>=0),圖像在第一象限.與p的奇偶性關系不大

    【函數的基本問題總結】相關文章:

    集合與函數概念總結10-25

    反三角函數公式總結11-03

    《函數的概念》教案(通用10篇)08-22

    確定一次函數表達式的教學反思(精選10篇)04-02

    關于二次函數與一元二次方程教學反思(精選10篇)09-27

    對老板總結感想總結二篇03-20

    學科總結03-20

    電場公式總結06-08

    離校總結精選范文03-19

    工會總結范本03-19

    用戶協議
    国产一级a爱做免费播放_91揄拍久久久久无码免费_欧美视频在线播放精品a_亚洲成色在线综合网站免费

      亚洲女同精品一区二区 | 亚洲精品欧美视频在线观看 | 精品一区二区久久久久久久 | 欧美日韩国产综合有码 | 亚洲人成电影手机在线网站 | 思思九九热在线视频免费精品 |